
Gottfried Wilhelm
Leibniz University Hanover

Faculty of Electrical Engineering
and Computer Science

Institute of Practical Computer Science
Department Software Engineering

Automatic tracing of security-critical
requirements in software projects

through the development of a plugin

Master Thesis

in course Computer Science

by

Jan-Marc Paßlack

Examiner: Prof. Dr. Kurt Schneider
Second Examiner: Dr. Jil Klünder

Supervisor: Alexander Specht

Hanover, 28.10.2024

ii

Erklärung der Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig
und ohne fremde Hilfe verfasst und keine anderen als die in der Arbeit
angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit hat in
gleicher oder ähnlicher Form noch keinem anderen Prüfungsamt vorgelegen.

Hannover, den 28.10.2024

Jan-Marc Paßlack

iii

iv

Zusammenfassung

Die heutige Softwareentwicklung ist ein komplexes Gebiet, in welchem
unabhängige Teams an verschiedenen Komponenten eines größeren Systems
arbeiten. Eine korrekte Implementierung aller Anforderungen stellt eine
signifikante Herausforderung für Entwickler dar, insbesondere im Kontext
sicherheitskritischer Anforderungen. Um dieses Problem anzugehen, wurde
in dieser Arbeit ein Plugin für Visual Studio Code (VS Code) entwickelt.
Es verwendet ein Large Language Model (LLM), um halb-automatisches
Tracing zwischen Anforderungen und der Implementierung im Code zu
ermöglichen.

Das Plugin analysiert den Code, zerlegt ihn in Funktionen, paart jede
Funktion mit den gegebenen Anforderungen und sendet es an das LLM,
welches bewertet, wie gut jede Funktion die jeweilige Anforderung erfüllt.
Ergebnisse werden mithilfe von Webtechnologien in der Seitenleiste von VS
Code angezeigt. Die Benutzer können sehen, welche Funktionen mit einer
Anforderung in Verbindung stehen, zusammen mit einer Bewertung und
einem Kommentar des LLMs.

Ein Datensatz mit sicherheitskritischen Anforderungen und entsprechen-
den Implementierungen in verschiedenen Programmiersprachen wurde ver-
wendet, um das LLM zu evaluieren. Einige Implementierungen wurden so
variiert, dass sie unvollständige Funktionalitäten aufwiesen, Variablennamen
zufällig Buchstaben enthielten und Kommentare entfernt wurden, um
die Robustheit des LLMs zu testen. Die Ergebnisse zeigen, dass das
LLaMA-Modell in Kombination mit einem bestimmten Paarungstyp von
Anforderungen und Implementierungen sehr genaue Übereinstimmungen
ergab. Außerdem hatten das Vorhandensein von Kommentaren und die Wahl
der Programmiersprache keinen eindeutigen Einfluss auf die Ergebnisse.

v

vi

Abstract

Automatic tracing of security-critical requirements in software
projects through the development of a plugin

Todays software development is a complex landscape, in which independent
teams work on different components of a larger system. The correct
implementation of all requirements represents a significant challenge for
developers, especially in the context of security-critical requirements. To
address this issue, a plugin for Visual Studio Code (VS Code) was developed
in this thesis. It integrates a Large Language Model (LLM) to enable semi-
automatic tracing between requirements and code implementations.

The plugin analyses the code, breaks it down into functions, pairs each
function with given requirements, and sends it to an LLM, which evaluates
how well each function meets the corresponding requirement. Results are
displayed in a custom sidebar using web technologies. Users can see which
functions are related to a requirement, along with a score and comment
provided by the LLM.

A dataset containing security-critcal requirements and corresponding
implementations with different programming languages were used to eval-
uate the LLM. Some implementation sets were varied to have incomplete
functionalities, randomised variable names and removed comments to test
LLM robustness. The results show that the LLaMA model in combination
with a certain pairing type of requirements and implementations produced
very accurate matches. Furthermore, the presence of comments and the
choice of programming language had no clear impact on the results.

vii

viii

Acronyms

AI Artificial Intelligence. 22

API Application Programming Interface. 9, 11, 14, 29, 34, 35, 36, 39, 40,
45, 46, 48, 52, 59, 60, 61

BDD Behavior-Driven Development. 18

CC Common Criteria. 15, 16

CSS Cascading Style Sheets. 10, 35, 39, 61

CSV Comma-separated values. 12, 25, 29

DOM Document Object Model. 10

FN False Negative. 14, 56, 58

FP False Positive. 14, 56, 58

GORE Goal-oriented Requirements Engineering. 16

GWDG Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen.
48, 52

HeRa Heuristic Requirements Editor. 15

HTML Hypertext Markup Language. 10, 12, 35, 39, 61

IDE Integrated Development Environment. 21, 27, 36, 59, 60, 61

JS JavaScript. 10, 11, 39, 40, 61

JSON Java Script Object Notation. 12, 25, 29, 44, 46, 54

LLaMA Large Language Model Meta AI. v, vii, 2, 53, 58

ix

x Acronyms

LLM Large Language Model. v, vii, 2, 8, 9, 16, 17, 21, 22, 23, 24, 25, 26,
28, 30, 40, 45, 48, 51, 52, 53, 54, 56, 58, 59, 60, 61, 63, 64

LUH Leibniz Universität Hannover. 52

NLP Natural Language Processing. 7, 8, 24

NPM Node Package Manager. 11

TDD Test-Driven Development. 18

TN True Negative. 14, 56, 58

TP True Positive. 14, 56, 58

TS TypeScript. 11, 12, 29, 40

UI User Interface. 23, 34, 36, 40

UML Unified Modeling Language. 4, 16

UMLsec Unified Modeling Language Security Extension. 16

URI Uniform Resource Identifier. 13

URL Uniform Resource Locator. 13

URN Uniform Resource Name. 13

VS Code Visual Studio Code. v, vii, 2, 7, 13, 27, 36, 37, 38, 39, 40, 41, 44,
46, 47, 48, 52, 59, 60, 61

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Approach . 1
1.3 Results . 2
1.4 Structure . 2

2 Fundamentals 3
2.1 Tracing . 3
2.2 Programming Languages . 6

2.2.1 C# . 6
2.2.2 Go . 6
2.2.3 Python . 7

2.3 NLP . 7
2.4 LLM . 8
2.5 Web Technologies . 9

2.5.1 HTML . 10
2.5.2 CSS . 10
2.5.3 JavaScript . 10
2.5.4 Electron . 11

2.6 Formats . 12
2.6.1 JSON . 12
2.6.2 CSV . 12
2.6.3 URI . 13

2.7 Tools . 13
2.7.1 Git . 13
2.7.2 Yeoman . 13
2.7.3 Postman . 14

2.8 Evaluation Metrics . 14

3 Related Work 15
3.1 SeqReq . 15
3.2 LLM for Goal Models . 16
3.3 CodeBERT . 16

xi

xii CONTENTS

3.4 LLMSecGuard . 17
3.5 Format of the Requirements 18

3.5.1 Gherkin Format . 18
3.5.2 Following a Cookbook 19

4 Concepts 21
4.1 Brainstorming . 21

4.1.1 Ways of tracing . 21
4.1.2 Forms of Interfaces . 23
4.1.3 Alternative Visual Representations 25
4.1.4 General Properties . 26

4.2 Development Enivronments 27
4.2.1 Text Editor . 27
4.2.2 Sublime Text . 34
4.2.3 Visual Studio Code . 36

4.3 Final Concept . 40

5 Implementation 43
5.1 Backend . 44

5.1.1 Extracting Functions 44
5.1.2 Tracing . 44
5.1.3 LLM . 45
5.1.4 Manual . 46

5.2 Frontend . 46
5.3 Debugging . 48

6 Evaluation 51
6.1 Procedure . 51
6.2 Prompt . 54
6.3 Data . 55
6.4 Results . 56

7 Discussion 59

8 Conclusion 61

9 Future Work 63

A Appendix 65

Chapter 1

Introduction

Cyber-attacks have become a major threat to the public and private sectors,
causing the loss of sensitive data and billions of dollars in damages [1]. One
reason for this is that in today’s software development landscape, ensuring
that all requirements are implemented correctly is a significant challenge for
developers [2]. Large systems may contain many components, which may
even be maintained by independent teams especially in agile development
[3][4]. To prevent information from beeing lost or misinterpreted, tracing
between software requirements and their corresponding implementations can
be used. This is a essential step in ensuring that the software meets the
required specifications [5][6]. As documentation is time-consuming, it is not
the focus of the developers, but rather the implementation itself [7].

1.1 Problem

The presented situation shows that there is a need for some kind of
automated tool to take the effort out of manually tracing requirements.
Even more so when it comes to security-critical requirements. In today’s
environment, it is crucial to ensure the correct implementation of these
requirements, such as encryption, access control and validation. Security
vulnerabilities can be caused by mismatches between requirements and their
implementations, where security-critical features are either overlooked or
only partially implemented [2][8][6].

1.2 Approach

An automated tracing tool could not only reduce the manual effort required
by developers, but also improve the accuracy and reliability of the results.
The potential of this type of automation has already been recognised [9].

1

2 CHAPTER 1. INTRODUCTION

To address the mentioned problem, the development of a plugin will be
presented in this thesis. To assist developers as automatically as possible, it
will run in the background of the development environment and analyse the
code without any user interaction. An interface should be intuitive and easy
to use, minimising the time needed to add requirements and view analysis
results. Developers may not use the tool if the effort required to use it is
too high. The use of LLMs in software development is already widespread
[10]. Therefore, the use of an LLM to identify the relationships between
requirements and even complex code implementations is a particular focus.

1.3 Results

The plugin was developed for VS Code and semi-automatic tracing of
requirements to the corresponding implementations within the code was
achieved by using a buzzword list and an LLM. An evaluation was then
carried out to analyse the accuracy of the LLM, taking into account the
effect of the programming language, the completeness and complexity of the
code and the way in which the pairs of requirements and implementations
were created. The results showed that the LLM was able to achieve a
high accuracy when matching the pairs under certain conditions. When
the LLaMA model was used together with the pairing of all requirements
and all implementations at once, the precision was 0.96, the recall was 0.74
resulting in a f1-score of 0.84. There was no clear difference visible between
the f1-scores of commented and uncommented code or between different
programming languages.

1.4 Structure

First, the necessary background information is provided in Chapter 2. This
includes explanations of relevant concepts, such as the basics of tracing and
the technology behind the plugin. Chapter 3 presents existing work in the
area of tracing methods and LLMs. Then, in Chapter 4, several approaches
to achieving automatic tracing and development environments are discussed.
Moreover, the implementation of the plugin is described in Chapter 5. The
evaluation of the LLM is then presented in Chapter 6 through conducting
an field study to evaluate its accuracy. Furthermore, the limitations of the
approaches are discussed in Chapter 7, as well as unresolved challenges and
issues. The Chapter 8 summarises the results briefly. Finally, the Chapter 9
concludes with an outlook on future possibilities.

Chapter 2

Fundamentals

This chapter lays the foundation for the terminology and the methods that
are necessary to understand the content of the thesis.

2.1 Tracing

The first step is to determine what is meant by the term requirements tracing.
Over time, a number of definitions have been produced by developers from
different perspectives. The following list shows four types of definitions [4].

• Purpose-driven: “...the ability to adhere to the business position,
project scope and key requirements that have been signed off.“

• Solution-driven: “...the ability of tracing from one entity to another
based on given semantic relations“

• Information-driven: “....the ability to link between functions, data,
requirements and any text in the statement of requirements that refers
to them“

• Direction-driven: “..the ability to follow a specific item at input of a
phase of the software lifecycle to a specific item at the output of that
phase“

While the purpose-driven definition is more concerned with the business
behind the project, the solution-driven definition focuses on the relationship
between different parts of the system through their meaning. In addition, the
information-driven definition is more about relating a variety of data sources
to the requirements. The direction-driven definition emphasises tracking the
progress of elements through the development process.

3

4 CHAPTER 2. FUNDAMENTALS

This variety of perspectives highlights the need for clear definitions of the
terms associated with tracing. Within their work “Traceability Fundamen-
tals“ [11], Gotel et al. have provided comprehensive definitions of these
terms. The ones that are used in this thesis are the following:

• Trace Artifact: “A traceable unit of data (e.g., a single requirement,
a cluster of requirements, a Unified Modeling Language (UML) class,
a UML class operation, a Java class or even a person). A trace artifact
is one of the trace elements and is qualified as either a source artifact
or as a target artifact when it participates in a trace. The size of the
traceable unit of data defines the granularity of the related trace.“

– Source Artifact: “The artifact from which a trace originates.“

– Target Artifact: “The artifact at the destination of a trace.“

• Trace Link: “A specified association between a pair of artifacts, one
comprising the source artifact and one comprising the target artifact.
The trace link is one of the trace elements. It may or may not be
annotated to include information such as the link type and other
semantic attributes. This definition of trace link implies that the link
has a primary trace link direction for tracing. In practice, every trace
link can be traversed in two directions (i.e., if A tests B then B is tested
by A), so the link also has a reverse trace link direction for tracing. The
trace link is effectively bidirectional. Where no concept of directionality
is given or implied, it is referred to solely as an association.“

– Primary trace link direction: “When a trace link is traversed
from its specified source artifact to its specified target artifact,
it is being used in the primary direction as specified. Where
link semantics are provided, they provide for a way to “read” the
traversal (e.g., A implements B).“

– Reverse trace link direction: “When a trace link is traversed
from its specified target artifact to its specified source artifact,
it is being used in the reverse direction to its specification. The
link semantics may no longer be valid, so a change from active
to passive voice (or vice-versa) is generally required (e.g., if A
replaces B then B is replaced by A).“

– Bidirectional trace link: “A term used to refer to the fact that
a trace link can be used in both a primary trace link direction and
a reverse trace link direction.“

2.1. TRACING 5

• Trace (Noun): “A specified triplet of elements comprising: a source
artifact, a target artifact and a trace link associating the two artifacts.
Where more than two artifacts are associated by a trace link, such
as the aggregation of two artifacts linked to a third artifact, the
aggregated artifacts are treated as a single trace artifact. The term
applies, more generally, to both traces that are atomic in nature (i.e.,
singular) or chained in some way (i.e., plural).“

– Atomic trace: “A trace (noun sense) comprising a single source
artifact, a single target artifact and a single trace link.“

– Chained trace: “A trace (noun sense) comprising multiple
atomic traces strung in sequence, such that a target artifact for
one atomic trace becomes the source artifact for the next atomic
trace.“

• Trace (Verb): “The act of following a trace link from a source artifact
to a target artifact (primary trace link direction) or vice-versa (reverse
trace link direction).“

• Traceability: “The potential for traces to be established and used.
Traceability (i.e., trace “ability”) is thereby an attribute of an artifact
or of a collection of artifacts. Where there is traceability, tracing can
be undertaken and the specified artifacts should be traceable.“

– Requirements traceability: “Requirements traceability refers
to the ability to describe and follow the life of a requirement, in
both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent de-
ployment and use, and through all periods of ongoing refinement
and itemtion in any of these phases)“

• Tracing: “The activity of either establishing or using traces.“

– Manual tracing: “When traceability is established by the
activities of a human tracer. This includes traceability creation
and maintenance using the drag and drop methods that are
commonly found in current requirements management tools.“

– Automated tracing: “When traceability is established via
automated techniques, methods and tools. Currently, it is the
decision as to among which artifacts to create and maintain trace
links that is automated.“

– Semi-automated tracing: “When traceability is established
via a combination of automated techniques, methods, tools and
human activities. For example, automated techniques may
suggest candidate trace links or suspect trace links and then the
human tracer may be prompted to verify them.“

6 CHAPTER 2. FUNDAMENTALS

2.2 Programming Languages

Each programming language has its own features and possibilities. They
differ from access to low-level system resources to the availability of libraries
for encryption and authentication.

2.2.1 C#

Developed by Microsoft, the C# programming language is used to implement
their .NET framework [12]. A framework is a platform that provides a set of
libraries and tools to simplify the software development. Combining object-
oriented and component-oriented paradigms, C# allows developers to create
self-contained packages of a given functionality. The language is type-safe
and has a unified type system, meaning that even primary types such as
integers are derived from a common root called object. In addition, the design
of C# focuses on versioning, allowing seamless integration with ever evolving
libraries and components. The virtual and override keywords allow for
the management of method overloading and interface member declarations,
thereby ensuring backward compatibility as software evolves. C# is a general-
purpose programming language that runs on a wide range of platforms and
offers both efficiency and simplicity, making it an good choice for handling
even complex development tasks1. Although it offers low-level functionality,
the standard code written in C# is considered “verifiably safe“, meaning that
.NET tools can be used to ensure its safety. However, developers have the
option to use “unsafe“ code when necessary to access advanced features such
as direct pointers or manual memory allocation. This allows them to manage
system resources more effectively while maintaining flexibility.

2.2.2 Go

Go, also known as Golang, is an open source programming language that was
started in 2008 [13]. In addition to the open source community, contributors
include employees of Google. One of the main design goals was to create a
language that works at scale, making it known for its simplicity and efficiency
in handling very large and complex systems. With an easy-to-parse object-
oriented syntax, it is easy to read and write code in Go. You can use existing
libraries to extend the functionality of the language, or write your own
to share with the community. It provides a high-performance concurrency
model by using its lightweight implementation of threads, called goroutines.

Go provides built-in security tools that can automatically scan code
for vulnerabilities using a curated database, enabling developers to identify
potential security issues at an early stage2.

1https://learn.microsoft.com/en-us/dotnet/csharp/
2https://go.dev/

2.3. NLP 7

It also includes cryptography libraries, making it a suitable option for
developing secure applications. Moreover extensions are provided for
popular development environments such as VS Code, enabling developers
to efficiently analyse and improve their code through automated analysis.

2.2.3 Python

A similar syntax is used by Python, developed by Guido van Rossum [14].
Python is a capable, high-level, object-oriented programming language that
allows developers to create a wide range of applications. Like many modern
languages, it is cross-platform and open source, with one of the largest
communities contributing to its growth. Python has an extensive collection
of libraries, many of which can be written in other languages such as C or
C++, further enhancing its functionality and performance. Its simplicity
and capabilities have made it one of the most popular languages in fields
such as artificial intelligence, data science and web development.

2.3 NLP

Natural Language Processing (NLP) is the automatic processing and analysis
of human language, helping machines to interpret and generate text [15]. To
achieve this, NLP systems use machine learning models that are trained
on large datasets of data [16], which is shown in Figure 2.1. Using a deep
understanding of language, NLP systems are able to understand both the
semantic and syntactic elements of text. At the syntactic level, NLP works
only with the structure and basic rules of the language. This enables tasks
such as machine translation, text summarisation and question answering.
On the other hand, semantic analysis allows NLP systems to understand
the deeper meaning of a text by extracting information that is not directly
written. An example of this is shown in Figure 2.2, where the system
interprets the meaning behind the words. The top sentence is a positive
statement. In contrast, the syntax of the lower sentence is positive, while the
semantic meaning is negative, which can be detected by some NLP systems.
This is crucial for tasks such as sentiment analysis, where the system
interprets the emotional tone or intent behind the words. NLP enables many
of today’s technologies, including search engines such as Google, where it
helps fetching relevant results based on the user’s query.

8 CHAPTER 2. FUNDAMENTALS

Figure 2.1: First step: NLP model learning process

Figure 2.2: Second step: NLP model usage (sentiment analysis)

2.4 LLM

An LLM is a neural network that can transform input text data into output
text data, making it ideal for NLP tasks such as translation [17]. The high
performance of the LLM is achieved by scaling up the model size, training
on larger datasets and using a greater amount of computing power. A larger
model has more parameters, allowing it to process more complex data at the
cost of more computing resources [18]. Chain-reasoning, problem solving,
and following instructions are just some of the capabilities of an LLM.

First, you need to create a prompt that describes the task you want to
perform [19]. The composing structure and the content of the prompt is
called prompt engineering, and it has a big impact on the quality of the
output. A prompt may contain a solved example for the given task, which is
called a 1-shot prompt. Correspondingly, a 0-shot prompt is a prompt that
contains no solved examples, and a few-shot prompt contains a few solved
examples.

2.5. WEB TECHNOLOGIES 9

The Application Programming Interface (API) from OpenAI3, the company
behind the LLM ChatGPT, offers some strategies for getting better results.
One is to write clear instructions, providing all the necessary details and
context, and using delimiters to separate the instructions from the data
contained in the prompt. An example would be: “Solve the calculation in
brackets: (2*2)“. It is also recommended that the model is given the steps to
solve the problem. It is also important to provide the model with reference
text to specify the output. For example, you can write a statement such as
“Output the result in the following format: solution: <number>“.

Going further, there are several properties of an LLM that can be
adjusted to improve the output. One is the temperature, where a higher
temperature results in more randomness, while a lower temperature results
in more deterministic output. You can instruct the LLM in a system prompt
to instruct it, while user prompts is contains a certain task.

Figure 2.3 shows an example of a conversation with an LLM, in this case
ChatGPT-4o. The user prompt at the top requires logical reasoning, which
the model is able to do by giving a correct answer at the bottom.

Figure 2.3: Reasoning capabilities of a LLM (ChatGPT-4o)

2.5 Web Technologies

Web technologies are the fundamental building blocks of modern web
development. They enable the creation of websites and applications that
are dynamic, visually appealing and easy to use. This section provides an
overview of used web technologies and frameworks.

3https://platform.openai.com

10 CHAPTER 2. FUNDAMENTALS

2.5.1 HTML

The Hypertext Markup Language (HTML) is the most widely used standard
for creating the structure and content of web pages [20]. It provides a
framework for putting text, images, buttons, links and other elements into a
structured document that can be displayed by web engines. HTML uses
a system of tags and elements to define headings, paragraphs, lists and
multimedia content, allowing developers to create hierarchies and layouts
of their content.

DOM tree

One of the core functions of HTML is to define the Document Object Model
(DOM) tree, which represents the objects in a tree-like structure that allows
CSS and JS to manipulate it to create dynamic and interactive elements.
Each element in the DOM tree is represented by a node, which has technical
parent-child relationships.

2.5.2 CSS

Cascading Style Sheets (CSS) is a stylesheet language that allows developers
to control the layout and appearance of their web applications [20]. While
HTML provides the basic structure and content, CSS defines the visual style,
such as colours, fonts, spacing and positioning. The CSS syntax is rule-
based, with selectors targeting HTML elements and declarations specifying
the properties to be applied. There are several types of selectors, including
element, class and ID selectors, which are used to apply styles to specific
elements or groups of elements. The cascading structure of CSS allows a
hierarchy of styles to be applied, with more specific rules taking precedence
over more general ones. For example, an ID selector will override a class
selector, while a class selector will override an element selector. Styles can
also be set to react to external conditions such as different screen sizes,
orientations, or device types, which is a crucial aspect of responsive web
design. In addition, CSS includes animations and transitions for adding
dynamic visual effects to elements without the need for JS.

2.5.3 JavaScript

Alongside HTML and CSS, JavaScript (JS) is crucial for web development
in order to manipulate the DOM tree in real time. JS is a flexible and
widely used programming language that allows interactivity and dynamic
behaviour. This means that without having to reload the entire page, you
can respond to user input and update elements on the page. It is also event-
driven, so it is possible to listen for clicks, keystrokes or mouse movements
and then execute code.

2.5. WEB TECHNOLOGIES 11

TypeScript

A disadvantage of JS is that it is not type safe, which can lead to errors that
are difficult to debug4. To solve this problem, TypeScript (TS) has been
developed as a superset of JS, adding syntax for types. With TS you can
define the types of elements such as variables, objects and function return
values. This allows you to catch errors during development rather than at
runtime, making the code easier to develop.

Node.js

Node.js is a high performance, free, open source, cross-platform JS runtime
environment5. It is built on the same core engine as Google Chrome. Because
Node.js lets you run JS code outside the browser, it makes it possible to
use JS to develop software such as servers and scripts. Its event-driven,
asynchronous architecture can handle many tasks simultaneously. This
makes Node.js an good choice for developing scalable network applications
that can effectively manage a high volume of concurrent connections.

Node Package Manager

Node Package Manager (NPM)6, hosted by GitHub, is the world’s largest
software repository and serves as the default package manager for Node.js.
It helps developers easily manage and share both private and public
packages, making code reuse more efficient. NPM is designed to increase the
productivity and security of JS development by providing a central platform
for discovering, installing, and managing dependencies.

2.5.4 Electron

Aimed at building native cross-platform desktop applications using web
technologies, Electron is an open source framework developed by GitHub7.
Based on Chromium and Node.js, it uses the native system API to access
the file system and display system notifications. This approach dramatically
reduces development time by allowing the same code base to be used across
all platforms. Installing and updating applications is also simplified by using
the Electron framework. Well-known examples of applications built with
Electron include 1Password, Discord, Signal and Dropbox.

4https://www.typescriptlang.org
5https://nodejs.org
6https://www.npmjs.com
7https://www.electronjs.org/

12 CHAPTER 2. FUNDAMENTALS

Angular

Within the Electron framework, another framework called Angular can be
used to build web applications8. Maintained by Google, it provides a set of
tools and libraries to create dynamic and interactive web applications from
small to large scale. It is based on a single page application architecture,
which means that the browser does not need to reload when the user
navigates to another subpage. A big advantage of Angular is the two-way
data binding, which allows to use the same data from the TS file to be
used in the HTML file. This makes tasks such as form validation and data
manipulation easier to implement.

2.6 Formats

In software development, the selection of appropriate standardised data
formats is important to ensure efficient data exchange and consistency. This
section outlines the formats used in this project’s objects and evaluation
database.

2.6.1 JSON

The Java Script Object Notation (JSON) format was developed with the
goal to establish a lightweight syntax for data exchange format [21]. The
main advantages of JSON are the simplicity of its structure and the
interoperability between different programming languages that use it.

JSON Schema

To ensure consistency of the data, the JSON schema has been used [22].
This schema defines the structure of the JSON file and the data types of
each element. Furthermore, the schema itself is also written in JSON format
and can be used to validate the JSON file.

2.6.2 CSV

When it comes to tabular databases, the Comma-separated values (CSV)
format has been a common choice for decades [23]. A CSV file consists of a
series of lines, each line representing a single entry. The first line of a CSV
file is often used as an optional header, containing the names of the columns
to provide context for the data. Values within each entry are separated by a
special character, usually a comma, which acts as a delimiter. Each row in
the file must contain the same number of columns. Overall, this structure
makes CSV files easy to read and write, and therefore quite popular.

8https://angular.dev

2.7. TOOLS 13

2.6.3 URI

Sometimes data is located in places that need to be explicitly known to
other parties. A Uniform Resource Identifier (URI) can be used to achieve
this [24]. This is a sequence of characters that identifies a resource, either
abstract or physical. They consist of several components such as scheme,
authority, path, query and fragment. They can also be classified as either or
both of the Uniform Resource Name (URN) and Uniform Resource Locator
(URL) types. URLs are well known for their use on the World Wide Web.

2.7 Tools

When developing software, it is important to have the right tools to support
the development process. This section introduces the tools used in this
project.

2.7.1 Git

Having a reliable place to store your code is essential, as it allows you to
store and track changes. Git is a free and open source distributed version
control system designed to efficiently handle everything from small to large
projects9. Another key advantage over other systems is Git’s branching
model, which allows independent feature development by creating separate
branches. This allows developers to work on new features, bug fixes or
experiments without affecting the main code base. These broad features,
combined with its relative ease of use, have contributed to Git’s widespread
adoption across the software development industry.

2.7.2 Yeoman

To simplify the process of starting new projects, Yeoman is a tool that
provides a system for using code generators10. It allows developers to
quickly create a new project from a predefined template, saving time and
ensuring consistency by creating configuration files, folder structures and
dependencies. There are a number of generators available for different types
of frameworks, such as Angular and React.

Extension and Customization Generator

The Extension and Customization Generator11 can be used to create a VS
Code extension. Inside the terminal, the generator asks a series of questions
to determine the type of extension to be created.

9https://git-scm.com
10https://yeoman.io
11https://www.npmjs.com/package/generator-code

14 CHAPTER 2. FUNDAMENTALS

It then automatically generates the folder structure and configuration files
required for the extension.

2.7.3 Postman

When testing or developing APIs, Postman is a useful tool that can be used
to send requests to a server and receive responses12. You can create and save
different requests, organise them into collections, and even share them with
your development team. Postman also provides automated testing, where
you can write tests to validate the responses to your requests. It is a great
tool for external debugging and testing of the API before using it in the
application.

2.8 Evaluation Metrics

In an empirical evaluation, the terms precision, recall and f1-score are
commonly used to measure the performance of a system. They range from
0 (worst) to 1 (best) and are calculated on the basis of True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN) values. A
TP is a instance correctly identified as positive, while a FP is a instance that
was incorrectly identified as positive. The values for TN and FN are defined
similarly. The following formulas for the metrics are adapted from the paper
[25]:

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

f1-score = 2 · Precision · Recall
Precision + Recall

(2.3)

In the case of this thesis, the values for TP, TN, FP, and FN are calculated
based on the following definitions:

• TP: The number of pairs between requirements and implementations
that are related and are identified as related.

• TN: The number of pairs between requirements and implementations
that are not related and are identified as not related.

• FP: The number of pairs between requirements and implementations
that are not related but are identified as related.

• FN: The number of pairs between requirements and implementations
that are related but are identified as not related.

12https://www.postman.com

Chapter 3

Related Work

While this thesis focuses on the traceability of security requirements to source
code, there are already some approaches and tools that address the tracing
of security requirements during other stages of development. Furthermore,
since the construction of requirements is a critical part of the development
process, the way requirements can be formulated is also discussed in this
chapter.

3.1 SeqReq

In a rapidly changing technology landscape, software developers often lack
sufficient security expertise [8]. As software systems become more complex,
it is easier to overlook security issues. The problem starts with the fact that
security requirements are not always clear or well explained by stakeholders,
who are often unaware of potential threats. This makes it difficult to
understand and document these requirements. The paper [8] presents
SeqReq, which helps developers to trace security requirements throughout
the system design process. The tool combines three techniques to ensure
that security is considered from the start.

1. The Heuristic Requirements Editor (HeRa) helps to dentify security
issues early by analysing requirements and descriptions. The software
has an editor that helps you find potential security risks using keywords
and patterns.

2. Common Criteria (CC) provides a framework for improving security
requirements. The framework provides a set of predefined security
classes, such as identification and encryption, to help develop secure
components.

15

16 CHAPTER 3. RELATED WORK

However, CC can be difficult at first for those without the right
knowledge, as it uses a domain-specific language and requires an
understanding of security concepts. To help people without in-depth
security expertise understand, CC uses a step-by-step method to guide
developers to meet the security requirements.

3. The Unified Modeling Language Security Extension (UMLsec) provides
a framework for tracking security requirements from the beginning
to the end of the design process. Therefore, these requirements are
represented in UML design models. This allows developers to check
that the design reflects the requirements and that no important security
features are overlooked.

3.2 LLM for Goal Models

In their paper, Hassine focuses on establishing trace-links between goal mod-
els and specific requirements [26]. The rise of LLMs brings great potential,
revolutionising automated traceability by solving previous challenges and
opening up new possibilities. Goal-oriented requirements provide a well-
defined structure with precise syntax and semantics, allowing the formal
documentation of desired goals and their dependencies. This approach is
a cornerstone of Goal-oriented Requirements Engineering (GORE), which
provides a systematic framework for creating, analysing and managing
requirements to meet stakeholder objectives. A key component of GORE
is the focus on non-functional requirements, such as security. The LLM
was asked to link requirements to objectives, while providing the rationale
for its decision. The evaluation tested a set of 42 requirements covering
both security and non-security aspects. The results were very promising,
demonstrating the capabilities of the LLM approach.

3.3 CodeBERT

To reduce the time developers spend searching through large code bases and
writing documentation, CodeBERT can help with its ability to link natural
language and programming languages [27]. It was the first large-scale, mul-
tilingual, pre-trained model to capture the semantic links between natural
language descriptions and code. One of its applications is in generation tasks,
such as the creation of code documentation. By analysing code, CodeBERT
can generate descriptive documentation that explains functionality in natural
language. Another important capability of CodeBERT is its ability to
perform tasks that involve understanding code. For example, in natural
language code search, CodeBERT can retrieve relevant code snippets based
on semantic similarity to a search query.

3.4. LLMSECGUARD 17

3.4 LLMSecGuard

For security requirements to be met, they must be correctly implemented
in the source code. The use of LLMs to generate code is widely spread in
software development [10]. However, their output code may contain errors,
which is particularly problematic in the security domain. In addition, some
developers lack the expertise to identify bugs and refine the input to improve
the generated code. This is where the open source framework LLMSecGuard
can assist, a tool that benchmarks the security properties of LLMs and
improves the security of the generated code. In the benchmarking process, an
LLM is given existing prompts with expected outcomes. The rating depends
on the accuracy of achieving the expected outcomes. Moreover, the workflow
of the second functionality of LLMSecGuard, the generation of secure code, is
shown in Figure 3.1. Starting with a user prompt, the prompt agent passes it
to the LLM which generates the code. The prompt agent then sends the code
to the security agent, which passes it to an external code analysis engine. If
vulnerabilities are found, the prompt agent is instructed to reformulate the
prompt to address them. This process is repeated until no vulnerabilities
are found or the maximum number of iterations is reached. At the end, the
improved code is returned with an analysis of its security properties.

Figure 3.1: LLMSecGuard’s secure code generation workflow [10]

18 CHAPTER 3. RELATED WORK

3.5 Format of the Requirements

The way requirements are constructed is critical to achieving complete and
understandable requirements. Incomplete, unclear and constantly changing
requirements are a major cause of defects in software projects [2][28]. There is
a lot of effort required to produce good requirements. As a result, particularly
agile developers may be tempted to skip writing requirements altogether [29].
The reviewed literature is divided on the best way to write requirements,
which will be the input for the plugin. On the one hand, César dos Santos
et Vilain claim that natural language formulations can be confusing and
suggest using a precise and structured way like the following Gherkin format
[2]. On the other hand, Shostack argues that while a structured format may
be appropriate as a guideline for writing general requirements, it may not
be the best choice for security requirements [29]. The reason for this is that
security would rarely be the main focus of a specific feature.

3.5.1 Gherkin Format

In Test-Driven Development (TDD), an existing test is used as the basis
for the implementation of a new feature. Behavior-Driven Development
(BDD) is achieved by incorporating acceptance testing into TDD. The IEEE
defines acceptance testing as formal testing conducted to determine whether
or not a system satisfies its acceptance criteria and to enable the customer
to determine whether or not to accept the system [30]. Consequently,
requirements are created by writing the behaviour and expected outcome
of the system. The Gherkin language follows this approach by writing
requirements in a structured way, while keeping the effort relatively low
[2].

It consists of three main parts: the feature, the scenario and the steps1.
Most lines start with a predefined keyword, which is crucial for the structure.
After the keyword, the text can be written in natural language with few
restrictions. The first line with the keyword Feature should contain an
abstract description of the feature. This can be followed by one or more
scenarios with the keyword Scenario. Each scenario should include a
description of the scenario followed by a list of steps. A step starts with one of
the keywords Given, When, Then, And and But. These are used to express
the context, the user’s actions and the expected outcome of the scenario.
Apart from these main parts, there are many more keywords and possibilities
to structure the requirements in Gherkin. For example, a Rule is used to
group together scenarios that follow the rule. In addition, Background can
be used to define steps that are executed before the scenarios of one feature
to reduce redundancy with writing the same information in the Given steps
of each scenario.

1https://cucumber.io/docs/gherkin/reference

3.5. FORMAT OF THE REQUIREMENTS 19

Some secondary keywords such as “|“, “@“ and “#“ are used to create tables,
tags and comments, which helps with the readability and organisation of the
requirements. An example of a Gherkin format can be seen in Figure 3.2. It
covers the conversion of a text file to PDF and DOCX formats.

Figure 3.2: A requirement in Gherkin format

3.5.2 Following a Cookbook

As the name suggests, this approach follows the concept of a cookbook, where
you can look up the recipe for a particular dish. You can use it as a base and
tweak it to your liking until you are happy with the result. In the context
of security requirements, you can take a “straw-man“ requirement and adapt
it to your specific needs. For example, in Figure 3.3 you can see a security
requirement for a login feature, which starts broadly and is specified further
in the following steps. This approach is still based on natural language and
is even easier to write, because you don’t have to follow a strict structure
like in Gherkin, and you can evolve the requirement as you need to.

20 CHAPTER 3. RELATED WORK

Figure 3.3: Example of the usage of a cookbook for writing security
requirements

Chapter 4

Concepts

While the related work focused on creating requirements traceability between
security requirements to artefacts such as design models and goal models,
this thesis focuses on establishing traces between the source artefacts security
requirements to the target artefacts code implementations. In this chapter,
the concepts that form the basis of the plugin are outlined. First, a
brainstorming presents different methods of tracing requirements to their
implementations, involving a list of buzzwords and the use of an LLM.
Afterwards, some forms of interfaces with different focuses are discussed.
The development environment sets the circumstances for the plugin and
determines the way it is implemented. Therefore, environments ranging
from a simple text editor and to an advanced Integrated Development
Environment (IDE) will be compared. At the end, the final concept of the
plugin will be described.

4.1 Brainstorming

At the start of the project, several concepts were developed about how the
plugin could be implemented and what features it could have. These features
were developed without focusing on the concern of the feasibility of the
implementation.

4.1.1 Ways of tracing

Two possible approaches for identifying pairs of requirements and implemen-
tations in the code are to use a list of buzzwords or to use an LLM.

21

22 CHAPTER 4. CONCEPTS

Buzzword List

A list of buzzwords contains common terms within the requirements and
the implementations. It can be specified whether the implementation term
should be contained in a function name, a variable or a comment. The system
then checks whether there is a word in the requirement that matches a term
in the buzzword list, and then searches for the corresponding pair of terms
in the code. This method allows the system to identify pairs of requirements
and implementations. To ensure that all relevant buzzwords are included,
the list may need to be updated regularly. The effort required to maintain
a list containing multiple programming languages can be considerable. An
example of the process of the buzzword list is illustrated in Figure 4.1. The
term “Validate“ for the requirement is matched with term “validate“ for the
implementation.

Figure 4.1: Process of the buzzword list concept

LLM

Another concept is to use the capabilities of Artificial Intelligence (AI) with
the use of an LLM to identify the pairs. First, the LLM is given a system
prompt, which contains the instructions on what to do. Afterwards, the user
prompt contains the requirement and the code. It is to be determined if the
structure of the prompts, requirements and code has any effect on the result.
As output, the LLM would give feedback on how well the requirement and
code match. This could be categories such as “perfect match“, “good match“,
“possible match“ or “no match“ or a score from 0 to 10.

4.1. BRAINSTORMING 23

For better understanding, a comment should be provided by the LLM to
explain why the match is rated as it is. Ideally, even code structures that
contain no comments or are complex should be understood by the LLM.
There could be problems when the code imports existent packages or external
functions as they are not part of the code itself. Also the use of multiple
programming languages may be challenging. All this could affect the quality
of the results. Furthermore, implementations that are incomplete, incorrect,
or just seem to be similar to the requirements but are actually not related to
them could be a difficulty for the LLM. The concept is shown in Figure 4.2.
Both the requirement and code are given to the LLM, which then outputs
if they are related. In this case the requirement “Validate API Request“
matches the code implementation well, resulting in a positiv rating.

A custom neural network could be trained and fine-tuned on a large
collection of pairs between security requirements and their implementations.
Although a great amount of effort is required to train the network, the results
could be more accurate and reliable than the results of the LLM.

Figure 4.2: Process of the LLM concept

4.1.2 Forms of Interfaces

Besides integrating semi-automatic tracing, the plugin should have an
intuitive User Interface (UI). Two different ideas for the interface were
considered, ranging from a search system to a data manager.

24 CHAPTER 4. CONCEPTS

Search System

The first idea for the interface was to create a project-wide search system
where the user could enter any number of keywords. Then the system should
be able to find the exact or similar matches in the code base. Perhaps the
keywords could be separated by a delimiter to search for multiple keywords
at once, where one or all of them must be present in the results. A natural
language phrase could also be used as input and the system would search
for the code that matches it. For this to work, the system may need to use
NLP to transform and understand the query.

The search should be available at all times, perhaps via a shortcut or
a search bar in the interface. The results should be displayed as a list in
descending order of relevance, which is determined by how well the code
matches the query. When you click on a result, the system should jump to
the corresponding code and highlight the matching parts. The search query
should be cached, so that the user can go back to previous search results if
necessary. For frequently used queries, the user should be able to save them
as favourites. In addition, some sort of search history would make it easier for
the user to go back to previous searches. To make searching more convenient,
search results could be filtered by aspects such as the programming language.

Data Manager

Another idea for the interface was to create a manager where the user could
enter the requirements, which would all be stored in a database, rather than
having to enter a search query everytime. This is similar to the concept of a
book, where the code is the content and the plugin is like the table of contents
to quickly find the right chapter. All requirements should be presented in a
list, where the user can see the current status of each requirement with an
appropriate colour. This status could indicate whether implementations have
been found or whether the implementation of the requirement is complete.
Like in the search system, some functionality to filter, sort and search the
requirements could be integrated. When entering a new requirement, there
should be two input fields for a title and a description. There could also be
an overall progress bar at the top so that the user can quickly see how many
requirements have been implemented.

Clicking on a requirement should display all the information about it. In
addition to the data already mentioned, the implementations found should
be listed. For each implementation, details such as the file name and
line number should be displayed, which can be clicked on to jump to the
corresponding code. In the case of using an LLM for tracing, the quality of
the match with a short explanation should be displayed. When a possible
implemenation is found by the system, the developer should be able to accept
or reject it.

4.1. BRAINSTORMING 25

If an implementation matches several requirements, there could be a link
to the other requirements to enable a reverse trace link direction. In the
background, the system should be able to scan the code base for new
implementations and update the status of the requirements accordingly. This
scan could be triggered manually or automatically when the code changes.
After the scan, the user should be notified of any implementations found and
be able to review them. When the user starts writing code, they could tell
the plugin that they are working on implementing a specific requirement.

In addition, if the automatic tracing system does not find an implemen-
tation, the user should be able to add it to a requirement manually. The user
should be able to edit and delete requirements if necessary. Changing the
requirement would have a direct impact on the previously found relationships
to implementations in the code. Even a single word change could result in
a different implementation being required. Therefore, all implementations
should be flagged for review for the developer, who can confirm or deny
the existing trace-link. The user should be able to see the history of the
requirement, so that they can see the content of the requirement before it
was changed, with a brief comment why it was changed. Another reason
why a requirement might be marked as changed is if the implementation has
been changed. Therefore, the system should be able to track the changes in
the code and update the status of the requirement accordingly. Within the
editor, the implementations could be marked with colours or tags to indicate
the trace-link to a requirement.

For time saving purpose, it should be possible to import and export to
commonly used formats such as CSV or JSON. This allows the user to build
on existing requirements management software solutions without the need
for redundant manual data entry. To further use the capabilities of the LLM,
the user could be able to ask the system for assistance in implementing the
specific requirement. This could range from a comment on what is missing
to a complete part of code implementing the functionality. Besides being
stored locally, the data could be synchronised with an internal database to
allow multiple developers to collaborate. This would reduce the risk of data
loss and the effort of data entry could be shared among team members.
Concluding, this concept could be used to assist during the development of
software, or even to check that all the requirements of an existing software
project have been implemented.

4.1.3 Alternative Visual Representations

Besides displaying the search results or the data in the database as a list,
there are other ways of presenting the data. Since the relationships between
requirements and implementations need to be shown, a graph or a flow might
be a good alternative. Mockups will be provided later in Figure 4.7.

26 CHAPTER 4. CONCEPTS

Connected Graph

A connected graph is a collection of nodes and edges, where the nodes
could represent the requirements and implementations and the edges the
bidirectional trace links between them. The thickness of the edge could
indicate how confident the LLM is with the found trace-link. Using the
data manager as the underlying system, the user could search for a keyword.
The path and nodes of the corresponding requirements and implementations
could be highlighted, while completely unrelated nodes could be hidden.
By clicking on a node, the user could see all the information about
the requirement or implementation and jump to the corresponding code.
Colours could be used to indicate the current status of the requirement or
implementation. The result of many data points would be chained traces of
nodes and edges, allowing the user to see the big picture of the project.

Flow

Focusing more on the concrete relationships between individual requirements
and their implementations, a flow might be another appropriate representa-
tion. Starting with the requirements on the left, the associated implementa-
tions are displayed on the right. The flow could be divided into sections, with
each section representing a requirement with its implementations. Similar
features, such as the thickness of the edges or the display of information when
clicking on a node, could be implemented as in the graph representation.

4.1.4 General Properties

Regardless of the type of tracing and interface, the plugin should contain
some properties that are important for the user experience. Since the plugin
tries to reduce the effort of manual tracing, it should be intuitive and easy
to install and use. The data should be presented in a clear and structured
way so that the user can quickly find the information they are looking for.
In addition, the time needed to analyse the code should be as short as
possible and never directly affect the developer’s work. Data should be
stored persistently so that the user does not lose the information when the
plugin is closed. The plugin should run on all widely used operating systems
to reach as many developers as possible. It should also work with the most
commonly used programming languages. To meet the needs of different types
of developers, the plugin should be customisable, for example by integrating
keyboard shortcuts.

4.2. DEVELOPMENT ENIVRONMENTS 27

4.2 Development Enivronments

The choice of the development environment is a crucial step for this plugin,
as it will determine the circumstances under which the plugin is developed.
In the following section, several development environments will be presented,
ranging from text editors to more advanced IDEs including Sublime Text and
VS Code. An IDE is a software application that facilitates the development
of software by providing a range of additional tools and features.

4.2.1 Text Editor

Starting with one of the most basic environments, a text editor is an
application that allows the user to view, write and delete text. Each
operating system comes with a pre-installed text editor, such as Notepad
on Windows or TextEdit on MacOS. Both are shown in the Figure 4.3.
They have a simple interface with a text area and a few buttons for basic
functions such as saving or opening a file, but there is no native support
for plugin integration. As a result, the plugin must be developed as a
standalone application that runs parallel to the text editor. This provides
the most freedom in developing the plugin, but may also require more effort
to implement.

Figure 4.3: Interfaces of TextEdit (top) and Notepad (bottom)

28 CHAPTER 4. CONCEPTS

External Application

Creating a standalone application that is cross-platform compatible can be
achieved by using the Electron framework. This simplifies the development
process by giving you access to the file system and allowing you to use the
native user interface elements of the operating system, such as displaying
notifications. Furthermore, Electron itself allows the integration of web
frameworks such as Angular to build the user interface. To stay within
the scope of the project, the root directory of the codebase needs to be
defined by the user. Therefore, a page containing some settings should be
implemented where the user can select the root directory. This page should
also contain other customisation options, such as shortcuts or the appearance
of the plugin.

Following the concept of a search system, submitting the search query
could trigger a scan of the code withing the project. File after file would
be searched for the keywords, and the results would be displayed in a list
of rectangular card elements, perhaps in a grid view to fit more cards on
the screen. Each entry would contain the file name and line number of
the match. For results suggested by the LLM, the explanation of why the
implementations is related to the requirement should also be displayed. In
addition, the certainty of the match could be indicated by colouring the
background of the card. The user could then click on a card to open
the corresponding file in a new text editor. In case the search is entered
frequently, a button should be displayed next to the input field to save the
search as a favourite. Another element next to the input field would be
the filter button, which opens a drop-down menu with options to filter the
results by a specific programming language or minimum confidence level. A
sidebar could display the history and favourites of searches, allowing the user
to quickly return to previous searches. On the other hand, the data manager
concept would be more complex to implement. The setting would be similar
to the search system, but the rest of the interface would be quite different.
An essential part is the functionality to add a new requirement. Clicking on
the Add button somewhere in the corner of the interface would bring up a
new card. This card would contain input fields for the title and description
of the requirement. There should also be a file input field for importing
requirements from an existing database file. After some requirements have
been added, they should be displayed again as cards in a list.

By clicking on a card, the user should see all the information about
the requirement in a new view. In addition to the title and description,
the status of the requirement should be displayed, with different icons and
colours indicating the degree of completion. The found implementations
should be displayed in a similar way to the previous search system concept.

4.2. DEVELOPMENT ENIVRONMENTS 29

Similar to the process of adding a requirement, the user should be able
to manually add an implementation with the file path and line numbers.
If necessary, the user should be able to edit the requirement by clicking
on an edit button. This would open the same view as when adding
a new requirement, but with the existing data already filled in. In
addition to the title and description, there should be a field for a comment
explaining why the change is needed. The user can also accept or reject
the implementation by clicking on the appropriate buttons. Accepting a
proposed implementation should change the colour of the card to green,
while rejecting it should remove it from the list. The information about
rejected implementations should be stored in the database so that it does
not reappear after the next scan.

Speaking of the database, there are a few things to consider. A simple
format like CSV or JSON could be used to store the data, but using a
real database management system has some advantages. For example, the
requirements and implementations are linked, which could be represented
by a relation within the database. It is also easier to modify specific data
entries such a system, rather than having to modify the whole file with CSV
or JSON. The database would run as a separate process on the computer,
using Node.js to create an API. This API could be called by the TS code to
send request and receive responses from the database. The database could
be synchronised with another database on a server for collaboration with
other developers.

The VisJS library1 could be used to visually represent the data as a
graph or flow. This library provides a wide range of options for creating a
graph, such as the colour of the nodes or the thickness of the edges. The
flow could be represented as a tree using the more hierarchical style. As this
view would be more complex and take up more space, it should overlay the
whole interface or be displayed in a new window. Some features should be
implemented to allow the user to interact with the graph or flow, such as
clicking on a node to see more information.

When the plugin is finally developed with all its features, publishing
the plugin is simplified by the Electron framework. Compatible tools
such as Electron Forge allow you to create a single executable for all
operating systems at once, without having to worry about the individual
implementation of the installation process.

1https://visjs.org

30 CHAPTER 4. CONCEPTS

In Figure 4.4, a mockup of the plugin interface is shown. Here the search
system is implemented with LLM as the tracing method. The user has
entered Message encryption as a search query and all results are displayed
as cards in a list view. Each card contains the file name and line number of
the match, as in the first case cryptography.py and line 122. While the first
two cards are marked with a green background, the third card is marked with
a yellow background and the fourth card is marked with a red background.
This indicates the certainty of the match, where green means a very good
match, yellow means a possible match and red means an unlikely match. To
the left of the input field is a filter icon and to the right is a favourite icon.
At the bottom of the interface, the user can press the settings icon to open
the settings view or the graph icon to open the graph view. On the left side
of the interface, recent searches such as Authentication Algorithm and Data
Validation are displayed as a history. Below the history, the user can see
the favourites, in this case Data Encryption. In the top right corner of the
sidebar there is an icon to toggle the display of the sidebar.

Figure 4.4: Mockup of the search system interface

4.2. DEVELOPMENT ENIVRONMENTS 31

The data manager displays all available requirements in its overview, as
shown in the mockup in Figure 4.5. The interface buttons for opening the
settings, activating filters and opening the graph view are placed in a similar
way to the search system. In the top right corner there is a button for adding
a new requirement. In the centre of the interface, the user can see all the
requirements as cards in a grid view. Each card contains the requirement’s
title, description and status. The Message Encryption and SQL Injection
Prevention cards have a status with a checkmark and a green background,
indicating that the requirement is already fully implemented. Otherwise, the
two cards Password Complexity Enforcement and API Rate Limiting have
a status with a hammer symbol and an orange background, which means
that the implementation is partially done. Finally, the Session Timeout
and Failed Login Lockout cards have a circle status with a blue background,
indicating that no implementation has yet been found.

Figure 4.5: Mockup of the data manager interface - requirements overview

32 CHAPTER 4. CONCEPTS

The mockup of the detail view of the Data Manager is shown in Figure
4.6. In this case, the user has clicked on the API Rate Limiting card within
the overview of Figure 4.5. As in the overview, the requirement’s title,
description and status are displayed. The user can click buttons at the top
to return to the overview, delete or edit the requirement and manually add
a new implementation. All implementations are listed below in a grid view,
similar to the search system mockup. At the bottom is the history of the
requirement, where the user can see how the requirement has changed over
time. In this case, the difference between the current version and the previous
one is that the description has been made more detailed by changing the rate
limit from 500 to 100.

Figure 4.6: Mockup of the data manager interface - detail view

4.2. DEVELOPMENT ENIVRONMENTS 33

When the user clicks on the graph icon in the bottom right corner of the
search system or data manager, a graph view is opened. This is shown as a
mockup in Figure 4.7. The graph view displays the trace-links between
requirements and implementations as a graph. Large nodes represent
requirements such as API Rate Limiting, Session Timeout and SQL Injection
Prevention. Moreover, small nodes represent the implementations such as
rate_limiter.go and server.js. Suggested implementations are dotted edges,
while confirmed implementations are solid edges. The thicker edge from API
Rate Limiting to rate_limiter.go compared to server.js indicates that the
first trace-link was created with a higher certainty. Files that can implement
multiple requirements, such as server.js, can be easily identified by having
multiple edges. The bottom half shows the flow view, which is a more
hierarchical representation of the traces. This shows the trace-link between
the message encryption requirement and its confirmed implementations, such
as main_hasher.py.

Figure 4.7: Mockup of the graph (top) and flow (bottom)

34 CHAPTER 4. CONCEPTS

4.2.2 Sublime Text

The previous development environment doesn’t have an API that can be used
by a plugin. Therefore, the features of the plugin have to be implemented
using external tools, which limits and complicates the development process.
This changes if the plugin can communicate directly with the development
environment using some sort of API. Sublime Text2 is a text editor that
provides this functionality as well as other more advanced features.

User Interface

The UI of Sublime Text is shown in the Figure 4.8. It is divided into
several parts, starting on the left with the sidebar (1). This contains the
File Explorer, which displays the files and folders of the current project in
a tree structure. The central editor area (2) contains the contents of the
files. The two files are opened side by side in a split view to make it easier
to access the information in both files at once. At the top of the editor
area (3) are tabs for each open file displayed, allowing you to quickly switch
between recently used files. The status bar at the bottom of the UI (4)
shows information about the current file, such as the programming language
used or the line and column number where the cursor is located. Finally,
a minimap to the right of an editor area (5) shows a preview of the whole
file, making it easier to navigate through the file. All these elements can be
customised in the preferences.

Figure 4.8: Interface of Sublime Text

2https://www.sublimetext.com

4.2. DEVELOPMENT ENIVRONMENTS 35

API

In addition to this interface with many features, Sublime Text provides an
API to extend its functionality. All plugins are written in Python and rely on
the integrated Python environment. This provides almost all the standard
Python modules, with a few exceptions. One of the most important features
of the API is the ability to access the folder and files of the current project.
This allows the contents of the files to be read, edited and deleted. In
addition, event listeners can be used to respond to user actions. These
include file events such as creating, saving or closing a file, or window events
such as opening, moving or closing a window. Another feature of the API
is the ability to create commands that can be executed by the user. These
commands can be triggered by defined events or by clicking a button in
the menu. To display information to the user, the plugin can use sheets.
These are small windows that can be displayed on the side of the interface.
The content of these sheets is limited to text, images and HTML elements.
Sublime Text provides its own HTML and CSS engine to render the sheets.
This is a subset of the normal HTML and CSS syntax. Changing Sublime
Text settings is also possible using API. This allows the plugin to change
the appearance of the interface, such as the colour scheme. When user input
is required, the plugin can use input panels. These are small windows that
accept plain text or the selection of items from a list as input.

Once the plugin has been developed, it needs to be packaged. This must
be imported into the environment by placing it in a specific Sublime Text
directory. The plugin runs in a different process from the editor itself, which
should make it more stable and secure.

Finally, Sublime Text’s API provides some features that could be useful
for the plugin. For example, the plugin could react to events such as saving
a file to trigger a scan of the code, or jump directly to the line of an
implementation. Also, access to the current file and text selection could
be used to simplify adding a new implementation to a requirement. Also,
the ability to render a rich user interface is rather limited with the custom
HTML and CSS engine, which could make implementing the plugin more
difficult. As a result, the rest of the plugin needs to be developed as a
standalone application that runs in parallel with a plugin in Sublime Text.
The general concepts of such an interface have been described in the previous
section of the text editor and shown in the mockups in Figures 4.4, 4.5, 4.6
and 4.7.

36 CHAPTER 4. CONCEPTS

4.2.3 Visual Studio Code

Much more advanced features are provided by the IDE Visual Studio Code
(VS Code) [31]. Its cross-platform capabilities make it an adaptable tool
for developers regardless of their operating system. VS Code offers a wide
range of integrated debugging tools. These tools streamline the identification
and correction of errors, speeding up the coding process. Another key
advantage of VS Code is its extensive API. It provides far more possibilities
for developing plugins, called extensions here. This has led to a large
community of developers who have created a wide range of extensions that
can be downloaded directly from the marketplace. In this section, the UI
and API of VS Code are presented in detail.

User Interface

The VS Code interface is divided into several parts, as shown in the Figure
4.9. The main ones are the activity bar (1), the primary sidebar (2), the
editor groups (3), the panel (4) and the status bar (5) 3.

Figure 4.9: Example of the interface of VS Code

3https://code.visualstudio.com/docs

4.2. DEVELOPMENT ENIVRONMENTS 37

The leftmost section contains an activity bar (1) that displays icons for the
different views. Clicking on the icons displays the corresponding content in
the primary sidebar (2). At the top of the bar is the File Explorer, which
provides a tree view of all the files and folders in the current workspace. A
workspace can be a single file, a folder, or a collection of folders. These do
not necessarily have to be in the same directory on the file system, but can be
distributed across multiple locations. The Search view allows users to search
for text within the files and folders in their workspace. Users can enter simple
keywords or use more complex search patterns using regular expressions. For
example, the pattern requirement[0-9] matches any string beginning with the
word requirement followed by a single digit between 0 and 9. In addition
to searching, you can also replace all instances of a pattern with another
string. There is also a source control view, which allows you to manage
your code using Git. This shows the changes made to the code since the
last synchronisation with the repository. This includes additions, deletions
and modifications to files. Once you have made the changes you want, you
can commit to the repository, add a description of the changes, and commit
to the server. The Run and Debug view, located below the source control
view, allows users to run and debug their code. It allows the creation of
run configurations, which define how the code is executed. Once configured,
users can initiate the execution of their code and view the output in the
terminal area. If this functionality is not sufficient for the user’s needs, they
can install extensions from the Marketplace, which are listed in the activity
bar at the bottom. There you can browse and add a variety of additional
features to VS Code, all for free. The last section at the bottom is the account
view, which displays account information and allows users to sign in and
out of their account. The account is used to synchronise personal settings
and additional extensions across devices, ensuring a consistent experience
across platforms without the need to reconfigure settings on each device. An
example of the File Explorer, Search View and Git integration is shown in
the Figure 4.10.

The Editor Groups (3) form the main area of the interface, where you can
view the contents of the files you are currently working on. It is possible to
have several files open at once, which are displayed as small tabs at the top
of the Editor Area. To view multiple files at once, you can split the editor
area into multiple groups, as shown in the Figure 4.9. These can be arranged
horizontally or vertically with an adjustable size, allowing you to make the
best use of your screen space. Within each editor pane, the contents of the
file are displayed, depending on the file type. As well as simple text files,
VS Code allows you to view a wide range of file types, including images,
videos and PDFs. Opening some file types may require the installation of
additional extensions.

38 CHAPTER 4. CONCEPTS

Figure 4.10: Examples of the activity and primary side bar

In addition, VS Code offers a variety of features that go beyond the basic
display of file contents. For example, text files have syntax highlighting,
which uses colour to differentiate between code components, making them
easier to identify. There is also code completion, which provides suggestions
for the code you are writing. Code snippets allow you to insert predefined
blocks of code using a simple keyword. For example, type for and press
tab to insert the structure of a for loop. The software offers a variety of
built-in tools, including the ability to select and rename variables in your
file, navigate to another file where a particular function is defined, and view
error descriptions by hovering over them, and view error descriptions by
hovering over highlighted errors in your code.

Below the editor area is the panel area (4) by default. It contains
several features, such as the integrated terminal, which allows you to execute
commands in the shell, as shown in the Figure 4.9. Then there is the output
view, which can show you the output of the commands or the results of the
execution of your code. The problems view lists all the errors and warnings
in your code, grouped by file, and can be further filtered.

At the bottom of the interface is the status bar (5), which is also shown
in the Figure 4.9. Here is some compact information about the current
state of VS Code, such as the language mode of the file you are working
on, the line and column number of the cursor position. According to the
design guidelines, information here should be displayed in a very compact
way, so that it does not take up too much space. In addition to the standard
elements, each plugin can add its own information to the status bar.

Apart from the main interface elements, there are a few other features
worth mentioning. If there is something important, such as a compilation
error or the loading status of a plugin, a notification will appear in the
bottom right-hand corner of the interface. Shortcuts allow to quickly perform
commands with just a few keystrokes. For example, open, save and close the
current file.

4.2. DEVELOPMENT ENIVRONMENTS 39

If the shortcut for a command is unknown, you can open the Command
Palette and search for the desired command. The Quick Open feature allows
to search for files in the workspace and open them directly. You can also
search for symbols in the code, such as functions, classes or variables, and
jump to their definition. These search functions are shown in the Figure
4.11.

Figure 4.11: Examples of different search types

VS Code is highly customisable to adapt to different developers. The theme
of the interface can be changed to a light or dark mode with various colour
schemes Furthermore the key bindings can be customised. You can also use
the Preferences view to fine-tune a number of features, such as changing the
font size or formatting the code when saving a file.

API

But one of the most imporant feature of VS Code for the plugin is the API
for developing extensions. Using this, you can add for example support for
other code highlighting in many programming languages. Moreover, you
can also get new visual themes for the user interface, or additional tools for
debugging the code. Most of these plugins are developed by the community,
which has created a huge number of plugins for many different use cases.
Microsoft provides extensive documentation and tutorials on how to develop
a plugin for VS Code.

Almost every feature of the API that Sublime Text has is found here.
This includes command creation, event listeners, input panels, file access
and more. But a big difference is the ability to create an advanced, directly
integrated user interface within the primary sidebar or editor area. The
API provides a file explorer-like tree structure that can be used to display
information. Going further, HTML, CSS and JS build a web view and allow
you to create a rich user interface.

40 CHAPTER 4. CONCEPTS

There is a lot of freedom in how the interface is designed, but the API
provides access to the colour theme of the user interface, so the plugin can
adapt to the common look of VS Code. To start development, you will need
to have some software already installed. In addition to VS Code itself, you
will need the code version control system Git. Then you need Node.js, the
JS runtime engine. This comes with NPM, which is used to install Yeoman
and the extension and customisation generator. Once these are installed,
you can start developing the plugin.

The backend of the plugin is mostly written in TS and the core of the
plugin is the package.json file. This defines the name, version, description,
author, licence and other metadata of the plugin. Then there are the menu
items, which are small buttons with an icon at the top that trigger a custom
command when pressed. Other items such as the icon and title in the activity
bar are defined. Also listed are the activationEvents, which are the events
that trigger the activation of the plugin. With 27 different events available,
e.g. when a file with a certain language is opened, when a certain command
is executed or when you open VS Code itself, the plugin can be activated in
many different ways. This activation event is handled in another important
part of the backend, the extension.ts file, which manages the core behaviour
of the plugin. When the plugin is activated, the activate function is called,
which can be used to register commands to perform actions on the plugin. It
also registers event listeners that are triggered when a specific event occurs,
such as when a file is opened or saved. These triggers can be used to execute
existing commands or any other desired action. Persistent data can be loaded
from storage when the plugin is activated.

A mockup of the plugin interface in VS Code is shown in the figure 4.12.
On the left is an overview of the requirements. Each requirement is displayed
as a card with the same information as in the standalone application. By
clicking on a card, the user can see the detailed view of the requirement,
which is displayed on the right. While the information displayed is again
similar to the standalone application, a key difference is that the plugin
interface is right next to the editor area containing the code.

4.3 Final Concept

This chapter has presented several concepts of how the project could be
implemented. As a form of interface, the data manager concept seems more
suitable, as it contains more features than the search system. VS Code was
chosen as the development environment, as it provides a very extensive API
for plugin development. In particular, the ability to create a custom UI
within the application is a huge advantage. Furthermore, both methods of
a buzzword list and LLM are considered for tracing. The buzzword list is
easier to implement, but the LLM will probably achieve better results.

4.3. FINAL CONCEPT 41

Figure 4.12: Mockup of the interface of the plugin in VS Code

Although, a fine-tuned neural network could provide even more accurate
results, no sufficient data was found to possible train it, so it was not further
considered.

42 CHAPTER 4. CONCEPTS

Chapter 5

Implementation

The most essential features have been implemented in a prototype. The
structure of the plugin is shown in Figure 5.1. It will be explained in the
following sections.

Figure 5.1: Structure of the plugin

43

44 CHAPTER 5. IMPLEMENTATION

5.1 Backend

Most of the functionality of the plugin is in the backend. The plugin’s
database contains data in JSON format, which is stored as a workspace
state. The dataset is structured as an array of objects, with each object
representing a specific request. Each object contains a title and description
provided by the user, as well as several plugin-specific properties. These are
an identifier to reference the requirement, a status to indicate whether the
requirement is implemented, the date of the last change to the requirement,
and a history of changes to the requirement. It also contains an array of
implementation objects. Each implementation object has an identifier, a file
path, a line number, a score and a comment. Finally, the actual schema is
shown in Figures A.2 and A.3.

When the plugin’s activation event is triggered, the database is loaded.
onStartupFinished was chosen as the trigger because it ensures that the
plugin can be used immediately without affecting the startup of VS Code.
In addition, a number of commands have been registered on activation. Some
of the commands are used to add, edit, delete and confirm requests, while
another command initiates a refresh of the view. The event to evaluate
the current file is set to be triggered by the user when saving a file. This
eliminates the need for the user to take any action and ensures a fully
automated process. Finally, the view provider for the web view is initialised.
Within this provider, the technical details of the web view are defined,
including storage locations and startup settings. In addition, communication
between the backend and the frontend is set up by creating message listeners
and functions to send messages.

5.1.1 Extracting Functions

For the prototype, only the analysis of Python files was implemented. When
the save event is triggered, the backend extracts all the functions from the
current file. This is achieved by reading the file line by line and looking for
the function definition keyword in Python, which is def. Once the start of
a function is identified, the backend then reads the following lines until the
end of the function is reached. This end is indicated by a combination of the
indentation level, the content and the current line. Some edge cases are also
taken into account, such as the end of the file.

5.1.2 Tracing

The next step is to compare the extracted functions with the specified
requirements.

5.1. BACKEND 45

Buzzwords

The first approach is to establish a trace-link between the functions and
the requirements using a list of buzzwords. This requires a list of pairs of
terms containing the most common words in the requirements and function
definitions. Since the relevant part of the code is the function definitions, the
list contains the most commonly used words in the function definitions of the
security packages. Particular attention has been paid to the cryptography
packages, as they are most likely to contain security-critical functions. Only
methods were used, but classes and properties etc. could also be used.

First, the most common and prominent ones were searched for. These
were PyCryptodome, Cryptography, PyNaCl, PyOpenSSL, Fernet, Keyczar,
M2Crypto and asn1crypto. The relevant documentation was then down-
loaded and all files in .rst format, a common plain text format used for
documentation, were extracted. Then all function definitions were extracted
and any function names not directly related to cryptography, such as copy
or exchange, were manually filtered out. Functions that served the same
purpose, such as encryption, were grouped together. As the requirements are
written in natural language, multiple variants of a term in the requirement,
such as encrypt and encryption, were also added to the list. Finally, out of
88 functions in the cryptography packages, a set of 14 pairs containing 44
functions and 57 natural language terms were created. A part of it is shown
in Figure A.1.

5.1.3 LLM

An alternative approach is to use an LLM to identify related requirements
and implementations. In this instance, the extracted functions are compared
to the requirements one by one using a request send to the LLM. The
prompt for the LLM is constructed from a system prompt and a user
prompt. While the system prompt remains consistent for each comparison,
the user prompt is constructed by pairing a requirement with a function. The
request is then passed to the LLM for processing, which can take some time.
The GWDG (Gesellschaft für wissenschaftliche Datenverarbeitung mbH
Göttingen)1 provides access to a variety of pre-trained models. Through their
API, the Llam-3.1-8B-Instruct and Llam-3.1-70B-Instruct can be accessed.
Since the smaller model is faster, it was chosen for the initial implementation.
The content of the system prompt and structure of the user prompt is
detailed in Chapter 6 in Figure 6.2. A difference to here is, that the LLM
is instructed to evaluate how well the requirement matches the function, by
assigning a score between 0 and 10. The score of 0 indicates no match, while
a score of 10 indicates a perfect match. In addition, the LLM is asked to
provide a brief comment on the score assigned.

1https://chat-ai.academiccloud.de

46 CHAPTER 5. IMPLEMENTATION

This response is then transformed into a JSON object, which is then
processed by the backend system. If the score is equal to or greater than 1,
indicating a potential correlation between the specified requirement and the
associated function, the result is added as a recommended implementation
and stored in the database alongside the original requirement.

5.1.4 Manual

In the case that the semi-automatic tracing doesn’t find a related implemen-
tation, the possibility to manually add it to the requirement was implemented
as a backup. This was be achieved by using the VS Code API, which provides
a method of getting the current selection in the editor. When the process is
initiated by pressing a button, the plugin adds the first line of the selection
as a new implementation to the current requirement.

5.2 Frontend

In terms of the frontend, the user interface of the plugin, several approaches
were taken to determine the optimal approach for presenting the require-
ments. The first approach was to use the standard VS Code building blocks
to display the requirements. One such approach is the tree view API 2, which
effectively displays information in a tree structure. However, it is challenging
to display requirements in a tree structure as they are not hierarchical, but
rather a list of requirements. The number of ways to display information in
this format is limited, as only text and icons can be inserted. In addition, a
way was needed for users to interact with the system, such as approving or
rejecting a proposed implementation. This could be achieved using buttons
in the navigation bar at the top of the primary sidebar, but the usability is
not optimal.

As a result, the Web View API was selected as the most suitable option,
which offers greater control over the design of the user interface. While this
flexibility is beneficial, it has also introduced a higher level of complexity. As
the web view runs in an iframe container, there is a degree of isolation, which
presents a challenge in terms of communication between the web view and
the rest of the plugin backend. One solution for data transfer between these
components is to use messages via the VS Code API. Each message consists of
a name and a payload, which can be any data that can be serialised to JSON.
In this particular case, the payload was used to transfer the requirements and
implementations to the web view. As these were objects containing strings,
numbers and arrays, they could be easily serialised and deserialised. Since
the access to local files from the web view is restricted for security reasons,
access must be explicitly granted.

2https://code.visualstudio.com/api/extension-guides

5.2. FRONTEND 47

However, a unique URI must be exchanged between the backend and the
frontend to allow access to local files. To further enhance security, the use
of scripts in the web view is disabled by default. Nevertheless, to facilitate
communication with the backend and dynamic content changes in the web
view, it is necessary to enable scripts. Upon receiving data from the backend,
the script creates html elements and populates them with the data before
appending them to the DOM tree.

The goal was to maintain a subtle design for the user interface. It was
important to ensure that the colour scheme of the plugin matched that of
VS Code. This was achieved by using the predefined colour scheme of VS
Code for the background and text. The web view is accessible to the user
via the VS Code sidebar, where the plugin is listed. Clicking on the icon
will open the primary sidebar displaying the web view. The user interface
has two main components. The first is the requirements list, as shown in
Figure 5.2. The navigation bar at the top of the sidebar (1) contains an
option to add a new requirement. When the button is clicked, a new input
field (2) appears where the user can enter the required data. The first input
field is for the title, while the second input field is for the description. Once
the input has been submitted, the new requirement is added to the database
and displayed in the list of requirements (3). Each requirement is displayed
in a card, containing the title, the description, the date of creation and
the current status. By default, newly created requirements are in the status
’open’. Each status has its own colour and icon for easy identification. When
the evaluation of the current file is triggered, a notification appears in the
bottom right-hand corner of the window (4).

When a requirement is selected, the second main component is displayed,
providing detailed information about the selected requirement, as shown
in Figure 5.3. The navigation bar (1) contains four different buttons as
shown. The button on the far left of the interface is used to delete the
selected requirement. To prevent accidental deletion, a confirmation pop-
up will appear asking the user to confirm their intention to proceed. The
second button allows the user to edit the requirement. When the button
is clicked, two input fields for the title and description are displayed in
sequence. A third input field prompts the user to comment on the changes
for future reference. Once the changes have been submitted, the requirement
is updated in the database and the view is refreshed to reflect the new data.
The third button allows the user to approve the requirement. When the
button is selected, a pop-up window appears asking the user to confirm
the action. Upon confirmation, the status of the requirement is updated
to finished and the view is refreshed. Finally, the fourth button allows the
user to add the first line of the current selection in the editor as a new
implementation. The title and status of the requirement are displayed below
the navigation bar (2). To return to the list of requirements, the user should
click on the Back button located to the left of the title.

48 CHAPTER 5. IMPLEMENTATION

The requirement’s description is displayed in a separate section below, next
to the creation date (3). The implementations are then displayed in a list of
cards (4). Each card displays the first line of the proposed implementation,
which the user can select to open the file at that point in the editor. The score
and comment provided by the LLM are also displayed. The card displays a
colour gradient from green to red indicating the score. The highest score is
green and the lowest score is red. An icon in the top right corner of the card
indicates that the implementation has been suggested by the AI. When the
user hovers the mouse over the card, two buttons appear, allowing the user to
either approve or reject the suggestion (5). If the implementation is rejected,
it is deleted from the database. Otherwise if the implementation is approved,
the score is replaced by a checkmark and the card is coloured blue, similar
to when a user adds an implementation. All implementations are sorted by
score, from the highest at the top to the lowest at the bottom. Above the
highest proposed implementation are those that have already been approved
or manually added by the user. As a result of editing the requirement, all
suggested implementations are deleted and the previously approved ones are
marked as to be reviewed in grey with a question mark. The user can re-
evaluate the questionable implementations by re-approving them if they are
still valid or rejecting them if they are not.

5.3 Debugging

During the development of the plugin, there were often situations where the
code needed to be debugged. Once the project is built, the plugin will start
in debug mode and a new instance of VS Code will be opened. The debug
mode is similar to the standard version of VS Code, but here the plugin is
installed and can be tested. As VS Code is built on top of Electron, the
debugging process is similar to web development. Opening the developer
tools allows the user to view the DOM tree and console output. As a web
view was developed to display the plugin, it was possible to inspect all the
elements and make direct changes to the styling. The console output shows
log messages, errors and warnings. Raw data was required for numerous
test runs, and manually creating and deleting requirements was a time-
consuming process. To streamline this process, two commands were added to
the plugin: one to clear all data and another to create a set of requirements
and implementations. Postman was used to test the GWDG API and with
its help the request limit was identified.

5.3. DEBUGGING 49

Figure 5.2: Interface of the requirements overview

50 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Interface of the detail component

Chapter 6

Evaluation

Both concepts of tracing, the buzzword list and the LLM, were implemented
in the previous chapter and worked. In small test runs, the LLM showed
more promising results than the buzzword list in identifying the correct
implementations. Therefore, this evaluation focuses on assessing the ability
of an LLM to accurately identify corresponding requirements and code
implementations. During the evaluation, a set of requirements will be
compared with different types of implementations. These types should cover
normal and difficult situations for the LLM to evaluate. After presenting the
evaluation procedure and outlining the dataset created and used, the results
are presented and discussed.

6.1 Procedure

The following questions are to be addressed at the end of the evaluation:

• Programming language: RQ1: How does the choice of programming
language (Python, C#, or GO) affect the LLM’s ability to match
requirements with implementations?

• Implementation Type: RQ2: How accurately does the LLM match
requirements to fully implemented functions, and does the accuracy of
the matches decrease with incomplete implementations? RQ3: How
does the use of randomized, nonsensical variable names affect the
LLM’s ability to identify the correct matches between a requirement
and an implementation ?

• Comments: RQ4: To what extent does the presence or absence of
comments in the code influence the LLM’s capability to accurately
identify matching requirements?

51

52 CHAPTER 6. EVALUATION

• Pair Type: RQ5: Does the accuracy of the matching change when the
LLM evaluates a pair of multiple requirements and implementations
simultaneously, compared to pairs of single entities?

• LLM: RQ6: How does the choice of LLM model impact the accuracy
of the matching?

A part of Hassine’s set of requirements [26], shown in Figure A.4, contains
several security-related requirements covering a broad range of issues. The
following four requirements were selected as the basis for creating the set of
corresponding implementations. Since several varieties will be created for
each requirement, the inital amount was kept small to keep the evaluation
manageable.

• The app shall integrate with trusted payment gateways like PayPal or
Stripe to secure financial transactions.

• The app shall encrypt user data using AES-256 encryption before
storing it on servers.

• The app shall enforce password complexity requirements and provide
options for multi-factor authentication.

• The app shall log and monitor login attempts, automatically locking
accounts after multiple failed login attempts to prevent unauthorized
access.

First, Python functions were created from the requirements using ChatGPT-
4o through LuhKI, an interface provided by the LUH. To keep the style
largely similar, these implementations were translated to GO and C#. Next,
the set was duplicated and the second half of the implementations were
removed to form an incomplete set of implementations. To further determine
if the LLM really understood the code or just checked for words that
appeared in the functions, the initial set was duplicated again and all
characters of variable names were replaced with random characters. All
code required for the functionality was retained. These three sets were
duplicated again and the comments were removed from the functions. A
total of 72 implementations were created in this way. Furthermore, the type
of requirement-implementation pairing was varied by using a prompt for
each pair (1x1), for all requirements with one implementation (Nx1), for one
requirement with all implementations (1xM), and for all requirements with
all implementations (NxM). The API of GWDG has a tight request limit (198
requests per hour, 1000 per day and 2999 per month). As a consequence,
the evaluation data was processed on the computer cluster at the Software
Engineering Group at LUH. To connect to the cluster and write the code for
the evaluation, the Remote - SSH extension for VS Code was used.

6.1. PROCEDURE 53

Since LLaMA and CodeLlama showed good results in understanding the
code [32], these two LLMs were used for the evaluation. Both were
publicly available for research purposes through Hugginface, a website that
provides data and tools in the field of machine learning1. Since code
analysis requires logical reasoning, the temperature was set at 0.01 to
give the most deterministic results. It was also planned to use models
with different parameter amounts to see the influence of model size on the
results. Unfortunately, running the higher models resulted in insufficient
memory errors on the cluster. Since the requirments are written in natural
language, they have a similar structure like those that are produced following
a cookbook concept. In a small comparison to corresponding requirements
that are written in the Gherkin format, the natural language ones were better
matched than the Gherkin ones. Furthermore, adding more requirements to
the dataset would have increase the complexity of the evaluation even more.
Therefore, the evaluation was limited to the 12 security-related requirements
in Figure A.4. A visual representation of the evaluation process explained
earlier is shown in Figure 6.1. It shows the different stages of how a request
is formed and sent to the LLM until it outputs the results.

Figure 6.1: Evaluation procedure

1https://huggingface.co

54 CHAPTER 6. EVALUATION

6.2 Prompt

To retrieve an evaluation within the response by an LLM, a system prompt
must be crafted to instruct the LLM on what to do. The prompt for the
1xM pair type is shown in figure 6.2.

Figure 6.2: System prompt for the one requirment - many implemenations
(1xM) pair type

The first line presents the context to the model. It then defines the input
format that the model should use to create pairs. Lines 4-6 tell the model
how to evaluate the pairs. Moreover, Lines 7 and below deal with the
output format, which should be JSON with certain data types. This is
crucial, because an unstructured output would make it difficult to evaluate
the results. As the model tends to describe its output afterwards, it is
instructed not to do so in the last line. Nevertheless, the model does not
just output a JSON object from time to time. An attempt was made to use
a library called Jsonformer2 to generate only JSON objects from the output,
but it couldn’t be made to work with the current setup. So the output is
additionally filtered for an array of objects and if it is not present, the output
is discarded. It was also intended to include a comment for each evaluation
to see the reasoning behind the decision.

2https://github.com/1rgs/jsonformer

6.3. DATA 55

Unfortunately, the amount of output tokens increased too much, resulting
in discarded data, so the comment was removed before the evaluation.

6.3 Data

To visualise the test data set, an example of a requirement is shown below,
along with the corresponding implementation types. The requirement is The
app shall encrypt user data using AES-256 encryption before storing it on
servers. The generated implementation in Python is shown in the Figure
6.3. In this case, the implementation is complete and commented. An
incomplete implementation is also shown in Figure 6.4. Here the second
half of the implementation code has been removed. Finally, Figure 6.5
shows a commented implementation with random characters. For each
implementation there is also a commented and uncommented version.

Figure 6.3: Example of an implementation - Type complete and commented

Figure 6.4: Example of an implementation - Type incomplete and
uncommented

56 CHAPTER 6. EVALUATION

Figure 6.5: Example of an implementation - Type random and commented

6.4 Results

A total of 6912 evaluations should be created per iteration. Since the
results were uncomplete due to broken output and not all single pairs of
requirements and implementations weren’t constructed by the LLM, the test
data was evaluated three times to mitigate the risk of missing data. After the
three executed iterations, a total of 20736 (3*6912) evaluations should have
been received. At the end, only 16.186 evaluations were obtained, which
is about 78% of the expected outcome. In the following, the results are
presented in Figures 6.6 and 6.7.
It should be noted that the tables are sorted by the categories Implementation
Type, Commented, LLM, Programming Language and Pair Type. In each
category the best f1-score is highlighted in blue and the worst in red. For
example, in the case of Implementation Type - Complete, 421 evaluations
were TP, 63 were FP, 3760 were TN and 992 were FN. Of the 484 evaluations
that were identified as related, 421 were correctly identified, which results
in a precision of 0.87. Furthermore, of the 1413 evaluations, where the
implementation was related, only 421 were correctly identified by the LLM,
resulting in a recall of 0.45. This gives a total f1-score of 0.3. Within
the category Programming language, the results differ only slightly between
them. Here, the GO got the best f1-score of 0.47 while Python got the worst
with 0.43. So RQ1 can be answered that the choice of programming language
has no clear influence on the results. Surprisingly, the best f1-score of the
Implementation Type was not the Complete with 0.45 but the Incomplete
with 0.53. Complete has a better precision, but incomplete has a better
recall.

6.4. RESULTS 57

Figure 6.6: Results of the evaluation - Part 1

Figure 6.7: Results of the evaluation - Part 2

58 CHAPTER 6. EVALUATION

To adress RQ2, the LLM made many FN evaluations and therefore the
f1-score is lower. Matches with Incomplete implementations had instead
an increased f1-score. Since the difference between the f1-score of random
implemenations with complete ones is quite small, RQ3 can be answered that
the use of randomized, nonsensical variable names has no clear influence on
the results. It is assumed that the LLM doens’t rely on variable names to
make its evaluations. Adding comments to the functions has only a minimal
positive effect on the results, with a better f1-score of 0.46 compared to
0.44, which answers RQ4. For the category Pair Type, the best results by
far were obtained with the all requirements - all implementations (NxM)
mode with a f1-score of 0.88. One reason for this could be that the
total number of extracted evaluations was quite low compared to the other
modes. Alternatively, the LLM could see the bigger picture of all the data
and therefore evaluate the pairs better. The worst results were obtained
with the all requirements - one implementation (Nx1) mode with a f1-score
of 0.29. Answering RQ5, the accuracy of the matching differes strongly
between different pair types, while the best results were obtained with the
(NxM) type. A clear difference can also be seen between the results of
the LLM s CodeLlama and LLama. Here LLaMA has a better f1-score of
0.56 compared to 0.35 of CodeLlama. One reason for this could be that
CodeLlama is a smaller model with 7B parameters, while LLama has 8B
parameters. So the answer to RQ6 is that the choice of LLM model clearly
impacts the accuracy of the matching. When iterating over all combinations
possible between the categories, there were 14 combinations with a f1-score
of 1 and 6 combinations with a f1-score of 0. In total 26 combinations
had no evaluations at all due to errorneous and uncomplete output of the
LLMs. Despite the fact that Incomplete implementations were rated best on
average in their category, all f1-scores of 0 were obtained with this type of
implementation. For example the combination C#, Incomplete, Commented,
LLama, 1x1 had a TP of 0, FP of 16, TN of 176 and FN of 0. In this case, the
LLM did not make any true positive matches and therefore gets a f1-score of
0. On the other hand, the combination of CSharp, Complete, Randomised,
CodeLlama and NxM had a f1-score of 1 with a TP of 6, FP of 0, TN of
66 and FN of 0. This shows the LLM was able to make correct evaluations
even if random characters are used.

Taking the best performing pair type (NxM) and the LLM (Llama-3.1-
8B-Instruct) into account in combination with complete and incomplete
implementations with comments or without, the TP was 108, FP was 4,
TN was 315 and FN was 37. This results in a precision of 0.96, a recall
of 0.74 and a f1-score of 0.84. These results are promising and show that
the LLM can give reliable results in when using the right configuration and
model.

Chapter 7

Discussion

The capabilities of the API of VS Code are quite extensive and have led to
many features being implemented. Some big advantages were the ability to
react directly to events and user input in the IDE and the freedom to create a
custom webview to display the information in the desired form. An overview
of all requirements of a single requirement was created to quickly view the
implentation status to identify requirements that are not yet implemented.
In the detail view, a user can see all confirmed and suggested functions that
implement the requirement, with a score and comment given by the LLM.

The results of the evaluation showed that comments are not necessary for
better matchings between requirements and implementations and that the
LLM can handle different programming languages equally well. Furthermore,
the LLM Llama-8B-Instruct in combination with the (NxM) pairing of
requirements and implementations produced very promising results with a
precision of 0.96, a recall of 0.74 and a f1-score of 0.84. Even though the
precision is quite high, a human should still check the results to ensure
that the trace-links are valid. Moreover, since the recall shows that not
all trace-links are found, a human must also create the missing trace-links
manually. This is especially important with security-critical requirements,
where each one must be implemented correctly. Concluding, in this case
semi-automatic tracing between requirements and code implementation was
successfully established.

Threats to Validity

A major challenge was to instruct the LLM to generate an accurate evalua-
tion of how well different code implementations match the requirements. To
achieve this, prompt engineering was a crucial step. It was also a challenge
to instruct the LLM to use a consistent output format for later processing.
In the end, it was achieved to get results in a almost desired form, but even
multiple lines of instructions not to comment the output could not prevent
the LLM from commenting the output anyway.

59

60 CHAPTER 7. DISCUSSION

The Jsonformer tool could assist here to get a more consistent output format.
An attempt was made to use it, but it wasn’t possible to integrate it into
the existing evaluation functionalities. Overall, further development of the
prompt and output format could lead to even better results. However, the
current results are promising and show that the LLM can give reliable results
in some situations. The dataset used in this thesis was relatively small
due to the exponential amount of combinations created from it. Again,
the output size of the responses caused many data points to be discarded,
which could have reduced the meaningfulness of the results. A dataset that
contains more requirements and implemenations could address this issue.
In addition, the implementations were generated by an LLM because of
unsufficient porficencies in the used programming languages. This could
led to less meaningful results than if they had been created by a humann,
as real developers may write code differently. Only three programming
languages were used, so it is not clear how well the LLM would work in other
languages. Different LLMs, or ones of the same type as those used, but with
more parameters, could have been used to get better results. Moreover,
the differences between the use of the Gherkin format and the natural
language for requirements were only briefly evaluated, which could be further
investigated. While only zero-shot prompts were used in this thesis, using
examples in the prompt could lead to even better results. Since no big dataset
was found, the approach of training a custom neural network was not further
followed in favor of working with a pre-trained LLM. Nevertheless, it would
be interesting to see how well it would perform compared to the LLMs. There
could be even more concepts of establishing trace-links between requirements
and code that were not considered in this thesis. Furthermore, since security-
critical requirements and code are handled, the data sent through the LLM
should not be used for any other purposes, which might led to a security risk.
This can be ensured by running the LLM on an internal server or even locally
on the user’s computer. If the plugin is not user-friendly or requires a lot of
effort to use it, developers are unlikely to adopt it. Looking at the buzzword
list for creating trace-links between requirements and code, it seems unlikely
that it will be able to compete with the LLMs. In addition, a complete list
of buzzwords might require a lot of effort to create and maintain. A study
would be needed to support these claims. Since it is a plugin for VS Code,
it is not compatible with other IDEs. Adding or removing code before a
function shifts the function’s line number accordingly, which in turn affects
the validity of trace-links. This is handled by the plugin by removing all
trace-links to that file and re-evaluating the file from the beginning. In this
case, an intelligent algorithm could be implemented to update only the line
numbers of the affected trace-links. Using the API to its fullest could take
the plugin even further.

Chapter 8

Conclusion

The problem of tracing requirements back to their implementation in code is
a common problem in software development, leading to poorly implemented
requirements. This is particularly important in security-critical software,
where correct and complete implementation of requirements is essential. As
an approach to this problem, a prototype of a plugin has been developed that
is directly integrated into VS Code and uses an LLM to allow semi-automatic
tracing between requirements and their implementation in code. VS Code
was chosen as the platform for the plugin because it is a widely used IDE
and the API for creating any kind of plugin is quite extensive. It opens up
even more features to extend the capabilities of the plugin beyond what is
currently developed. To establish the trace-links between the requirements
and the code, the backend of the plugin first analyses the code and then
divides it into functions. These functions are then sent in combination with
the requirements to an LLM to determine how well a function implements a
requirement, if at all. The frontend of the plugin displays all the information
in a custom web view in the sidebar of VS Code, created with HTML, CSS
and JS. It contains two main views, an overview of all requirements and
a detail view of a single requirement. Within the detailed view, the user
can see all the functions that implement the requirement, with a score and
comment given by the LLM.

The capabilities of several LLMs were evaluated to determine how well
they perform in creating accurate trace-links between requirements and code.
This was done by creating a dataset containing security-critical requirements
and their implementations in Python, C# and Go using an LLM. Each
implementation set was further diversified by removing comments, making
the implementation incomplete, or randomising variable names to see how
well it understood even difficult code that would be challenging even for a
human analyser. These requirements and implementations were paired in
four different ways, such as one-to-one and one-to-many, to see how much
the LLM could handle at once while still giving accurate results.

61

62 CHAPTER 8. CONCLUSION

The results of the evaluation showed promising outcomes when using the
right model and pairing of requirements and implementations. There was
no clear difference with the presence or absence of comments or the choice
of programming language.

Chapter 9

Future Work

As this plugin is a prototype, there are many opportunities to extend the
plugin’s capabilities in future work. Within the editor, the plugin could
be further integrated into the development process. For example, each
function that implements a requirement could have a link to the requirement
displayed above the function. When the user has implemented a requirement,
a notification could be displayed to indicate that the requirement has been
implemented. A synchronisation feature with data from other developers
could also be implemented to reduce redundant work. It could be logged
how long and who worked on which implementation. This could be used to
see all the developers responsible for the implementation and how long it took
to implement the requirement. The trace-links created between requirements
and code could be integrated with other tools to show the overall progress
of the project. Alternatively, the plugin could receive other linked artefacts,
such as mockups, to be displayed in the requirements detail view, providing
a more comprehensive view of how the requirement is to be implemented.
In addition, the plugin could be used to generate tests for the requirements
and automatically run them against the code. This could help to ensure
that the requirements are implemented correctly and that the code works
as expected. The LLM could even be used to generate the implementations
for the requirements, or to finish partially implemented functions. If the
requirement has changed, this could also be used to indicate what needs to be
changed in the code. In these cases, the plugin could use the LLMSecGuard
framework to generate safe code suggestions. To increase the security of
the plugin, the data being stored and processed could be encrypted and the
LLM could be run locally on the user’s computer or run on an internal server.
Furthermore, a local instance would reduce latency and work even when the
user is offline. This would require the LLM to be small and efficient enough,
or a powerful enough computer. The developed plugin was based on the
presented data manager approach.

63

64 CHAPTER 9. FUTURE WORK

Some features of the search system could also be integrated into the plugin,
such as a search bar. The other types of visualisation, such as the graph and
flow view, could also be integrated into the plugin. Some features that aren’t
implemented yet are filtering and sorting of requirements in the overview.

The capabilities of LLMs could be tested even more to identify potential
weaknesses or methods to achieve better results. This would include testing
other LLMs with many more parameters, such as Llama-3.1-405B-Instruct.
Also, the essential part of prompt engineering could be further investigated to
find a more appropriate prompt for evaluating a requirement-implementation
pair. In addition, the approach of training a custom neural network
specifically designed to identify the relationships between requirements and
implementations could also be followed to see if it performs better than the
mentioned LLMs.

It would be interesting to see the plugin in action and the real impact
it would have on the fulfilment of requirements. A user study could be
conducted where the plugin is used in a real project from start to finish.
This could also be compared to the use of other tools for automatic or semi-
automatic tracing of requirements to code. Since the LLMs used are not
only trained on security-critical code, it would be interesting to see how well
they perform on all kinds of requirements. Also, with some modification,
the plugin could be used to analyse a completed project to see how well the
requirements were implemented.

Appendix A

Appendix

Figure A.1: Part of the buzzword list used in the plugin

65

66 APPENDIX A. APPENDIX

Figure A.2: JSON Schema for the requirements - Part 1

67

Figure A.3: JSON Schema for the requirements - Part 2

68 APPENDIX A. APPENDIX

Figure A.4: Requirements by Hassine [26] for the evaluation

The app shall integrate with trusted payment gateways like PayPal or Stripe
to secure financial transactions.
The app shall encrypt user data using AES-256 encryption before storing it
on servers.
The app shall enforce password complexity requirements and provide options
for multi-factor authentication.
The app shall log and monitor login attempts, automatically locking accounts
after multiple failed login attempts to prevent unauthorized access.
The app shall allow users to set privacy preferences for their designs,
controlling who can view or edit them.
The app shall provide end-to-end encryption for all user data, ensuring
privacy during transmission and storage.
The app shall implement tokenization for sensitive financial information to
safeguard against unauthorized access.
The app shall regularly update encryption protocols to maintain strong data
security standards.
The app shall use machine learning algorithms to detect patterns indicative
of fraudulent behavior.
The app shall notify users and administrators of suspicious activities and
provide guidance on how to secure their accounts.
The app shall regularly undergo security audits and penetration testing
to identify and address potential vulnerabilities, ensuring enhanced app
security.
The app shall employ the principle of least privilege, granting access
permissions to users based on their roles and responsibilities to minimize
the risk of unauthorized access.

Acknowledgements

I would like to thank my family and friends for their ongoing encouragement
and support. Furthermore, I would also like to thank my supervisor
Alexander Specht for his guidance and time spent every week throughout
the course of this thesis.

69

70 APPENDIX A. APPENDIX

Bibliography

[1] Garima Bhardwaj et al. “Cyber Threat Landscape of G4 Nations:
Analysis of Threat Incidents & Response Strategies”. In: 2021 2nd
International Conference on Intelligent Engineering and Management
(ICIEM). IEEE. 2021, pp. 75–79.

[2] Ernani César dos Santos and Patrícia Vilain. “Automated Acceptance
Tests as Software Requirements: An Experiment to Compare the
Applicability of Fit Tables and Gherkin Language”. In: Agile Processes
in Software Engineering and Extreme Programming. Ed. by Juan
Garbajosa, Xiaofeng Wang, and Ademar Aguiar. Cham: Springer
International Publishing, 2018, pp. 104–119. isbn: 978-3-319-91602-6.

[3] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dybå. “Understanding
Self-Organizing Teams in Agile Software Development”. In: 19th
Australian Conference on Software Engineering (aswec 2008). 2008,
pp. 76–85. doi: 10.1109/ASWEC.2008.4483195.

[4] O.C.Z. Gotel and C.W. Finkelstein. “An analysis of the requirements
traceability problem”. In: Proceedings of IEEE International Confer-
ence on Requirements Engineering. 1994, pp. 94–101. doi: 10.1109/
ICRE.1994.292398.

[5] J.H. Hayes, A. Dekhtyar, and J. Osborne. “Improving requirements
tracing via information retrieval”. In: Proceedings. 11th IEEE Interna-
tional Requirements Engineering Conference, 2003. 2003, pp. 138–147.
doi: 10.1109/ICRE.2003.1232745.

[6] Patrick Rempel and Parick Mäder. “Preventing Defects: The Impact
of Requirements Traceability Completeness on Software Quality”. In:
IEEE Transactions on Software Engineering 43.8 (2017), pp. 777–797.
doi: 10.1109/TSE.2016.2622264.

[7] Rashidah Kasauli et al. “Requirements engineering challenges and
practices in large-scale agile system development”. In: Journal of
Systems and Software 172 (2021), p. 110851. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2020.110851. url: https://www.
sciencedirect.com/science/article/pii/S0164121220302417.

71

https://doi.org/10.1109/ASWEC.2008.4483195
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICRE.2003.1232745
https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/https://doi.org/10.1016/j.jss.2020.110851
https://www.sciencedirect.com/science/article/pii/S0164121220302417
https://www.sciencedirect.com/science/article/pii/S0164121220302417

72 BIBLIOGRAPHY

[8] Siv Hilde Houmb et al. “Eliciting security requirements and tracing
them to design: an integration of Common Criteria, heuristics, and
UMLsec”. In: Requirements Engineering 15.1 (2010), pp. 63–93. doi:
10.1007/s00766-009-0093-9. url: https://doi.org/10.1007/
s00766-009-0093-9.

[9] Thazin Win Win Aung, Huan Huo, and Yulei Sui. “A literature review
of automatic traceability links recovery for software change impact
analysis”. In: Proceedings of the 28th International Conference on
Program Comprehension. 2020, pp. 14–24.

[10] Arya Kavian et al. “LLM Security Guard for Code”. In: Proceedings
of the 28th International Conference on Evaluation and Assessment
in Software Engineering. EASE ’24. Salerno, Italy: Association for
Computing Machinery, 2024, pp. 600–603. isbn: 9798400717017. doi:
10 . 1145 / 3661167 . 3661263. url: https : / / doi . org / 10 . 1145 /
3661167.3661263.

[11] Orlena Gotel et al. “Traceability Fundamentals”. In: Software and
Systems Traceability. Ed. by Jane Cleland-Huang, Orlena Gotel, and
Andrea Zisman. London: Springer London, 2012, pp. 3–22. isbn: 978-
1-4471-2239-5. doi: 10.1007/978-1-4471-2239-5_1. url: https:
//doi.org/10.1007/978-1-4471-2239-5_1.

[12] Anders Hejlsberg et al. The C# programming language. Pearson
Education, 2008.

[13] Jeff Meyerson. “The Go Programming Language”. In: IEEE Software
31.5 (2014), pp. 104–104. doi: 10.1109/MS.2014.127.

[14] KR Srinath. “Python - the fastest growing programming language”.
In: International Research Journal of Engineering and Technology 4.12
(2017), pp. 354–357.

[15] Erik Cambria and Bebo White. “Jumping NLP Curves: A Review of
Natural Language Processing Research [Review Article]”. In: IEEE
Computational Intelligence Magazine 9.2 (2014), pp. 48–57. doi: 10.
1109/MCI.2014.2307227.

[16] Ming Zhou et al. “Progress in Neural NLP: Modeling, Learning,
and Reasoning”. In: Engineering 6.3 (2020), pp. 275–290. issn: 2095-
8099. doi: https : / / doi . org / 10 . 1016 / j . eng . 2019 . 12 . 014.
url: https://www.sciencedirect.com/science/article/pii/
S2095809919304928.

[17] Yongchao Zhou et al. Large Language Models Are Human-Level Prompt
Engineers. 2023. arXiv: 2211.01910 [cs.LG]. url: https://arxiv.
org/abs/2211.01910.

https://doi.org/10.1007/s00766-009-0093-9
https://doi.org/10.1007/s00766-009-0093-9
https://doi.org/10.1007/s00766-009-0093-9
https://doi.org/10.1145/3661167.3661263
https://doi.org/10.1145/3661167.3661263
https://doi.org/10.1145/3661167.3661263
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1109/MS.2014.127
https://doi.org/10.1109/MCI.2014.2307227
https://doi.org/10.1109/MCI.2014.2307227
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.014
https://www.sciencedirect.com/science/article/pii/S2095809919304928
https://www.sciencedirect.com/science/article/pii/S2095809919304928
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910

BIBLIOGRAPHY 73

[18] Yifan Yao et al. “A survey on large language model (LLM) security
and privacy: The Good, The Bad, and The Ugly”. In: High-Confidence
Computing 4.2 (2024), p. 100211. issn: 2667-2952. doi: https : / /
doi . org / 10 . 1016 / j . hcc . 2024 . 100211. url: https : / / www .
sciencedirect.com/science/article/pii/S266729522400014X.

[19] Laria Reynolds and Kyle McDonell. “Prompt Programming for Large
Language Models: Beyond the Few-Shot Paradigm”. In: Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing
Systems. CHI EA ’21. Yokohama, Japan: Association for Computing
Machinery, 2021. isbn: 9781450380959. doi: 10 . 1145 / 3411763 .
3451760. url: https://doi.org/10.1145/3411763.3451760.

[20] Danny Goodman. Dynamic HTML: The definitive reference: A com-
prehensive resource for HTML, CSS, DOM & JavaScript. O’Reilly
Media, Inc., 2002.

[21] T. Bray. RFC 8259: The JavaScript Object Notation (JSON) Data
Interchange Format. USA, 2017.

[22] Felipe Pezoa et al. “Foundations of JSON Schema”. In: Proceedings of
the 25th International Conference on World Wide Web. WWW ’16.
Montréal, Québec, Canada: International World Wide Web Confer-
ences Steering Committee, 2016, pp. 263–273. isbn: 9781450341431.
doi: 10.1145/2872427.2883029. url: https://doi.org/10.1145/
2872427.2883029.

[23] Johann Mitlöhner et al. “Characteristics of Open Data CSV Files”.
In: 2016 2nd International Conference on Open and Big Data (OBD).
2016, pp. 72–79. doi: 10.1109/OBD.2016.18.

[24] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986: Uniform
Resource Identifier (URI): Generic Syntax. USA, 2005.

[25] Cyril Goutte and Eric Gaussier. “A Probabilistic Interpretation of
Precision, Recall and F-Score, with Implication for Evaluation”. In:
Advances in Information Retrieval. Ed. by David E. Losada and Juan
M. Fernández-Luna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 345–359. isbn: 978-3-540-31865-1.

[26] Jameleddine Hassine. “An LLM-based Approach to Recover
Traceability Links between Security Requirements and Goal Models”.
In: Proceedings of the 28th International Conference on Evaluation
and Assessment in Software Engineering. EASE ’24. Salerno, Italy:
Association for Computing Machinery, 2024, pp. 643–651. isbn:
9798400717017. doi: 10 . 1145 / 3661167 . 3661261. url: https :
//doi.org/10.1145/3661167.3661261.

https://doi.org/https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/https://doi.org/10.1016/j.hcc.2024.100211
https://www.sciencedirect.com/science/article/pii/S266729522400014X
https://www.sciencedirect.com/science/article/pii/S266729522400014X
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1109/OBD.2016.18
https://doi.org/10.1145/3661167.3661261
https://doi.org/10.1145/3661167.3661261
https://doi.org/10.1145/3661167.3661261

74 BIBLIOGRAPHY

[27] Zhangyin Feng et al. CodeBERT: A Pre-Trained Model for Program-
ming and Natural Languages. 2020. arXiv: 2002.08155 [cs.CL]. url:
https://arxiv.org/abs/2002.08155.

[28] Talha Javed, Manzil e Maqsood, and Qaiser S. Durrani. “A study to
investigate the impact of requirements instability on software defects”.
In: SIGSOFT Softw. Eng. Notes 29.3 (May 2004), pp. 1–7. issn: 0163-
5948. doi: 10.1145/986710.986727. url: https://doi.org/10.
1145/986710.986727.

[29] Adam Shostack. Threat modeling: Designing for security. John Wiley
& Sons, 2014.

[30] IEEE SA. “IEEE Standard for Software Verification and Validation
Plans”. In: IEEE Standards (1986). IEEE 1012-1986.

[31] Alessandro Del Sole and Del Sole. Visual Studio Code Distilled.
Springer, 2019.

[32] Claudio Curto et al. “Can a Llama Be a Watchdog? Exploring
Llama 3 and Code Llama for Static Application Security Testing”. In:
2024 IEEE International Conference on Cyber Security and Resilience
(CSR). 2024, pp. 395–400. doi: 10.1109/CSR61664.2024.10679444.

https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.1145/986710.986727
https://doi.org/10.1145/986710.986727
https://doi.org/10.1145/986710.986727
https://doi.org/10.1109/CSR61664.2024.10679444

	Introduction
	Problem
	Approach
	Results
	Structure

	Fundamentals
	Tracing
	Programming Languages
	C#
	Go
	Python

	NLP
	LLM
	Web Technologies
	HTML
	CSS
	JavaScript
	Electron

	Formats
	JSON
	CSV
	URI

	Tools
	Git
	Yeoman
	Postman

	Evaluation Metrics

	Related Work
	SeqReq
	LLM for Goal Models
	CodeBERT
	LLMSecGuard
	Format of the Requirements
	Gherkin Format
	Following a Cookbook

	Concepts
	Brainstorming
	Ways of tracing
	Forms of Interfaces
	Alternative Visual Representations
	General Properties

	Development Enivronments
	Text Editor
	Sublime Text
	Visual Studio Code

	Final Concept

	Implementation
	Backend
	Extracting Functions
	Tracing
	LLM
	Manual

	Frontend
	Debugging

	Evaluation
	Procedure
	Prompt
	Data
	Results

	Discussion
	Conclusion
	Future Work
	Appendix

