
Gottfried Wilhelm
Leibniz Universität Hannover

Faculty for Elektrotechnik und Informatik
Institute for Practical Informatics

Software Engineering Group

Deriving a Quality Model for
Collaboration in Software Projects
Based on an Interview Study and

Literature

Master’s Thesis

in the Major of Computer Science

by

Michael Mircea

Examiner: Prof. Dr. Kurt Schneider
Secondary Examiner: Dr. Jil Klünder

Tutor: Alexander Specht

Hannover, 01.08.2024

ii

Erklärung der Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig
und ohne fremde Hilfe verfasst und keine anderen als die in der Arbeit
angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit hat in
gleicher oder ähnlicher Form noch keinem anderen Prüfungsamt vorgelegen.

Hannover, den 01.08.2024

Michael Mircea

iii

iv

Zusammenfassung

Zusammenarbeit in Softwareteams ist ein komplexer, vielseitiger und aus-
schlaggebender Faktor für den Erfolg von Projekten und die Zufriedenheit
deren Entwickler. Qualitätsmodelle werden zahlreich im Bereich der Soft-
wareentwicklung genutzt, um komplexe Attribute zu verbessern, allerdings
hauptsächlich um die Qualität der entwickelten Software messbar zu machen.
Diese Arbeit verfolgt den Ansatz die Funktionalität von Qualitätsmodellen
zu nutzen, um den komplexen Begriff der Zusammenarbeit in Softwareteams
in einzelne Qualitätsaspekte zu unterteilen und diese messbar und verbesser-
bar zu machen. Dabei liegt ein besonderer Fokus darauf, dass das Modell
universell einsetzbar ist, unabhängig von der genauen Art der Zusamme-
narbeit. Das hier entwickelte Qualitätsmodell basiert auf der Analyse einer
umfangreichen Interviewstudie und einer ausführlichen Literaturrecherche.
Das entwickelte Modell wurde in einer weiteren Interviewstudie hinsichtlich
ihrer Vollständigkeit validiert. Basierend auf den Interviews wurden An-
passungen am Model vorgenommen. Anschließend wurden quantitative
Daten in einer Onlineumfrage erhoben, um die Wichtigkeit und Korrektheit
der einzelnen Qualitätsaspekte zu ermitteln. Abschließend wurde die
Validität diskutiert. Das Qualitätsmodell bietet somit eine fundierte
Grundlage sowohl zur direkten Anwendung in Softwareteams als auch für
eine fortführende Anpassung und Weiterentwicklung.

v

vi

Abstract

Collaboration in software teams is a complex, broad and decisive factor for
project success and developer satisfaction. Quality models are widely used in
the domain of software engineering to make complex attributes measurable,
but mainly in order to improve the quality of the developed software itself.
This thesis follows an approach of trying to use the functionality of quality
models in order to subdivide the complex concept of collaboration in software
teams into distinct quality aspects and make them both measurable and
improvable. A special emphasis was put on making the model as universally
applicable as possible, regardless of the exact mode of collaboration. The
developed quality model is based on an analysis of an extensive interview
study, as well as a detailed literature review. The developed model was
validated for completeness in a further interview study. Based on the
findings, the model was adjusted. Subsequently, quantitative data was
gathered in an online survey in order to determine the correct placement and
importance of the single quality aspects. Lastly, all findings were discussed in
regards to the model’s validity. Thus the quality model offers a well-founded
basis, both for the direct application in software teams as well as for further
adjustments or extensions.

vii

viii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Solution Approach . 2
1.3 Results . 2
1.4 Structure . 3

2 Fundamentals 5
2.1 Quality Models and GQM . 5
2.2 Collaboration versus Teamwork 7
2.3 State of Collaboration in Software Teams 9
2.4 Related Work . 11

3 Conceptualization 17
3.1 Methodology . 17
3.2 Coordination . 19
3.3 Communication . 21
3.4 Knowledge and Expertise Sharing 23
3.5 Technical Cohesion . 24
3.6 Motivation . 25
3.7 Social Cohesion . 27
3.8 Overview and Further Categorization 30

4 Interview study 33
4.1 Study Design . 33
4.2 Participants . 36
4.3 Main Findings and Revision of the Model 37

5 Survey 45
5.1 Study Design . 45
5.2 Participant Acquisition and Demographics 48
5.3 Results . 50

ix

x CONTENTS

6 Discussion 59
6.1 Importance of the Individual Quality Aspects and Subdimen-

sions . 59
6.2 Low-Rated and Critiqued Quality Aspects 61
6.3 Considerations for Revisions 63
6.4 Interdependence of Socio-technical Factors 64
6.5 Positioning Suggestions and other Comments 66
6.6 Summary of Revisions and Final Model 67
6.7 Threats to Validity . 67

7 Collaboration Metrics 69
7.1 Infrastructure . 69
7.2 Leadership . 70
7.3 Technical Consistency . 70
7.4 Source Code Level Collaboration 71
7.5 Peer Review . 71
7.6 Peer Education . 72
7.7 Peer Validation . 72
7.8 Mutual Support . 72
7.9 Trust . 73
7.10 Respect . 74
7.11 Group Membership . 74
7.12 Shared Understanding . 75
7.13 Information Exchange . 75
7.14 Error and Conflict Resolution 76
7.15 Mutual Benefit . 76
7.16 Shared Ideals . 77
7.17 Engagement . 77

8 Review and future work 79
8.1 Conclusion . 79
8.2 Future Work . 80

Chapter 1

Introduction

Researchers have been trying to analyze the aspect of collaboration in
software development for a long time. In a project from 1999, the results
of which were published in a paper from 2002 by Augustin et al. [1], a
first attempt was made to determine the reason why internet developed
community projects of the time (such as Linux, Apache and Samba) were
developed faster and with higher quality than comparable commercially
available alternatives. From those successful projects they derived a set of
practices they coined Collaborative Software Development (CSD). These
practices mostly opposed the mainstream organizational culture of the time
and are congruent with the simultaneously emerging agile principles, as
they are known from the Agile Manifesto [3] today. They also showed the
first signs of special needs and attentions in regards to collaboration in
software development, which diverged from the type of collaboration that
was viewed as the norm.

Ever since then, efforts have been made to better understand the aspect of
collaboration in software teams. However, at the same time collaboration in
the domain of software development grew more and more complex, making
it ever harder to define.

1.1 Problem Statement

The quality of collaboration is highly correlated with the quality of the
developed software and developer satisfaction [12]. However, collaboration
in software teams is a more broad and multi-faceted concept today than
ever, because of the increases in temporal, geographical and sociocultural
distances [15] within software teams. In addition, the term collaboration is
widely used in research, however it is rarely clearly and consistently defined
and its meaning is often assumed to be obvious, both in literature [2] and
in practice [24]. It is, for example, often used as a synonym for teamwork,

1

2 CHAPTER 1. INTRODUCTION

or just generally not considered separately from other social factors [24].
This shows a clear need for a widely applicable, but also detailed approach
to defining what constitutes collaboration in software teams.

The research questions of this work, as guided by the described problems,
are as follows:

RQ1: What constitutes high quality collaboration in software teams?

RQ2: How can the quality of collaboration in software teams be
measured and improved?

1.2 Solution Approach

Quality models (cf. section 2.1) have established themselves as valuable
tools in the domain of software engineering [26]. They are especially useful
for breaking down a complex concept into simpler subdimensions, which are
measurable and the improvement of which contributes to the improvement
of the complex aspect. They are used numerously, however mostly to assess
the quality of the developed software itself. This work follows an approach
of utilizing the functionality of a quality model in order to define the aspect
of collaboration, specifically in the domain of software development, and
make its quality more objective and quantifiable. A special focus was set
on accommodating all types of collaboration in software teams, regardless
of temporal, geographical or sociocultural distances, while overfitting the
model to none of them.

1.3 Results

This work derived a quality model for collaboration in software teams
through an extensive literature review, supplemented by industry expert
opinions and validation. The aspect of Collaboration was eventually broken
down into six subdimensions with a total of 17 quality aspects. A first draft
of the model was validated for completeness in expert interviews. These
interviews offered additional insights to the literature, which led to slight
alterations to the model. The adjusted model was then validated in an
online survey which was exclusively administered to software developers with
experience of working in teams. A total of 58 subjects completed the survey,
which led to quantifiable data about the importance of the individual quality
aspects in regards to collaboration and further modifications. In addition
to the scope of regular quality models, this work also suggests metrics
for measuring each of the quality aspects, which are mostly established in

1.4. STRUCTURE 3

scientific literature and supplemented with the data gathered in the interview
and survey. Based on holistic discussion of all evidence, the model offers a
well-founded basis for direct application in software teams. However, there
still remains plenty of potential for future work in regards to the model,
which will be discussed at the end.

1.4 Structure

This work is structured as follows: The following chapter 2 will go over the
fundamentals pertaining to this thesis, giving explanations of used terms
and concepts. It also gives an overview of related work that was most
influential for the creation of the model. Chapter 3 uses the gathered
information and presents the argumentation for the synthesis of the quality
model. Subsequently, the validation of the model is presented. First, the
interview study, its findings and the resulting changes to the model are
presented in chapter 4. Subsequently the quantitative data gathered by
the online survey is presented in chapter 5. All the previously mentioned
findings and their final implications for the model are holistically discussed
in chapter 6. Afterwards, chapter 7 supplements the validated model with
metric suggestions for the individual quality aspects. Finally, the last chapter
8 gives a closing review and an outlook on possible future work that could
be conducted with the findings of this thesis.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

This chapter offers a familiarization with the concepts commonly used and
referenced within this work. It will offer a brief introduction into the
fundamentals necessary to understand the later chapters, as well as an
overview of related work that was influential to the developed model. In
order to keep this chapter concise, the related works will only be presented
partially and superficially within this chapter, while more specific findings
relevant to the model will be discussed in detail in chapters 3 and 7.

2.1 Quality Models and GQM

Quality models are an option to achieve a measurement mechanism for
evaluating the quality of an object of observation in software engineering.
They have been tested numerously in studies to evaluate quality within
the domain of software engineering [26][23]. Most of these models seek to
analyze and improve the quality of the software product itself, including the
most well known quality model which is documented in the International
Organization for Standardization’s ISO 25010 [13] standard. A partial
(for the purposes of visibility) visualization of the model is presented
in figure 2.1. While the quality model developed in this thesis will not
concern itself with the quality of the software product (though correlations
between quality of collaboration and quality of a software product have
been shown [12]), ISO 25010 lends itself well for the explanation of quality
models and how they are used. Software quality is a very complex,
broad, subjective and hard to measure concept. There are many factors
that need to be considered when talking about the quality of a software.
ISO 25010 deconstructs the concept into its characteristics (referred to
as subdimensions within this work), for example Functional Suitability.
These subdimensions all contribute to the quality of the software as a
whole, however they are already less complex. In the next step, the model
deconstructs the subdimensions into further sub-characteristics (referred to

5

6 CHAPTER 2. FUNDAMENTALS

Figure 2.1: Excerpt of ISO 25010, limited to four (out of nine)
subdimensions for better visibility. Modified from [13].

as quality aspects within this work). In the case of Functional Suitability,
it is further deconstructed into Functional Completeness, Functional
Correctness and Functional Appropriateness. This process can be repeated
almost indefinitely to deconstruct the subdimensions into further and
further subdimensions. However, the goal is to arrive at quality aspects that
are simple and specific enough to be measured by specified metrics. The
analysis, measurement and improvement of these metrics then contribute to
the improvement of the higher dimensions and finally the software product
quality itself. As mentioned before, software quality can be highly subjective
and case specific. For example, every project has its own definition of what
constitutes Functional Appropriateness. Thus, determining the metrics by
which to measure the quality aspects is part of using a quality model in
practice.

An approach for deriving the appropriate metrics for the specific case
is the Goal Question Metric Approach [7] (GQM). The authors describe the
approach as follows:

“The Goal Question Metric (GQM) approach is based upon the assumption
that for an organization to measure in a purposeful way it must first
specify the goals for itself and its projects, then it must trace those goals to
the data that are intended to define those goals operationally, and finally
provide a framework for interpreting the data with respect to the stated goals.”

2.2. COLLABORATION VERSUS TEAMWORK 7

This process will be explained with the example of an online learning
tool for students: First a goal is defined for an object. When using a
quality model, the object in question will be a quality aspect of the model,
such as Capacity (part of Performance Efficiency) in ISO 25010. In our
hypothetical scenario the goal could be defined as follows:

Goal: “The capacity of the online tool needs to be able to accommodate
our current student numbers during peak hours”.

Next, a set of questions is defined to characterize the way a specified goal
can be achieved. Example:

Question 1: “Are there any server outages or connection aborts due
to overload?”

Lastly, a set of metrics can be derived to quantitatively answer every
question. Example:

Metric 1: Average number of connection aborts in a 24 hour period.
Metric 2: Average server downtime (in seconds) in a 24 hour period.

Thus, a quality model can be used to analyze a complex aspect,
deconstruct it into measurable quality aspects and determine metrics to
measure and improve them for the specific goals of a project. While GQM
is a common practice in the application of a quality model, this thesis will
further supplement its quality model with generic metric suggestions for the
measurement of its quality aspects in chapter 7.

2.2 Collaboration versus Teamwork

Part of the motivation for this thesis was the often unclear and inconsistent
definition of the term collaboration, even in scientific literature. In their
2017 paper “Collaboration in agile software development: Concept and
dimensions” [2], Batra et al. note the following:

“Indeed, in searching the literature, we found numerous studies that
mention the term. However, these studies often assume what collaboration
means, do not provide clear and consistent definitions, and rarely elaborate

on the dimensions that constitute collaboration.”

Similar experiences were made during the literature review for this paper.
Furthermore, in an interview study [24], practicing software developers
mostly failed to define the term collaboration by itself, instead equating it
with other socio-technical factors like communication or motivation.

8 CHAPTER 2. FUNDAMENTALS

They often described these factors as being “basically the same” or “going
hand in hand”, thereby showing the need for clarification, but also the
strong interdependence between these factors, which is something that will
be a recurring, important fact considered within this work. Therefore, the
first step in creating the quality model was to create a clear distinction
between collaboration and other, related terms.

The distinction between collaboration referring to developer teams
and the frequently used related terms customer collaboration and teamwork
were especially challenging in literature. In a highly influential work from
2001 [12] Hoegl and Gemuenden try to define factors that constitute high
quality teamwork. However, the authors explicitly and exclusively use the
term Teamwork Quality (TWQ) as a measure of collaboration in teams.
In this case, the terms are used interchangeably. Other authors, however,
ascribe further qualities to teamwork than factors relevant to collaboration.
In a 2017 paper [28], Weimar et al. extend and validate the aforementioned
TWQ model. Among other things, they extend the model with a factor
called Coordination of Expertise. This is a management factor concerning
itself with efficient resource management, without being directly related
to collaboration. Similarly, in a paper analyzing teamwork effectiveness
in agile software development [27], Strode et al. developed a Teamwork
Effectiveness Model (ATEM). They included the factor Redundancy, derived
from the factor Backup Behavior (taken from the teamwork model [22] by
Salas et al.). Redundancy and Backup Behavior refer to the “ability to shift
workload among members to achieve balance during high periods of workload
or pressure” [22]. For example, if an important developer is overloaded,
or temporarily unfit for work, somebody needs to be able to take over his
responsibilities. This might be good teamwork, but no collaboration is
involved in the process. Conclusively, it is also concerned with efficient
resource management and almost counterproductive to collaboration, as it
seeks to redistribute a workload to different individuals.

The Merriam Webster1 dictionary definitions of the two terms further
supplement the distinction that will eventually be made for the scope of
this work:

• Teamwork: work done by a group acting together so that each member
does a part that contributes to the efficiency of the whole

• to collaborate: to work jointly with others or together especially in an
intellectual endeavor

To summarize, the concept of teamwork concerns itself with all work done
by individuals as part of a team, which contributes to the efficiency of

1https://www.merriam-webster.com (accessed 24.06.2024)

2.3. STATE OF COLLABORATION IN SOFTWARE TEAMS 9

the team as a whole. As such, teamwork contains collaboration between
team members as a subset of qualities. However, it also consists of work
done by individuals in solidarity, but as part of a team, such as filling
vacancies to evenly distribute the workload. Since teamwork mostly concerns
itself with efficiency and results of the team, concepts such as efficient
resource management or coordination of expertise are relevant factors for
its quality. However, these factors are not relevant to the quality of the
collaboration itself. In contrast to the definition of teamwork, the definition
for collaboration within the scope of this thesis will be centered around
interactions and is as follows:

“Collaboration is the process of two or more individuals interacting,
directly or indirectly, for the purpose of achieving a shared task or

goal.”

Collaboration can exist cross-functionally (such as with customer collabora-
tion) within teams or between teams. As this work seeks to improve the
collaboration of software teams, the main focus for the quality model will
be on intra-team collaboration. Despite the high quality and influence of
research in regards to teamwork quality, this work will not consider factors
that do not directly impact the quality of collaboration as defined above.

2.3 State of Collaboration in Software Teams

Due to its digital nature, software development has always been a type
of work well suited for distributed teams. Going back to the late 90s,
open source online projects have already proven themselves capable of
producing high quality software [1]. Nowadays, working across distances
has become a common practice in software development [15], both through
globally distributed teams, remote work, as well as the rising popularity
of home office options in employment, especially following the COVID-19
pandemic [10]. Indeed, in searching the literature, many papers analyzing
collaboration did so for a special mode of collaboration, such as open source
development [1] or globally distributed organizational teams [15].

When designing a model for collaboration in software teams, one has to
take into account all possible modes of collaboration that are commonplace
and consider their impact on the teams’ collaboration. Lanubile et al.
[15] analyzed the threats of globally distributed development on certain
team related factors. They summarized their findings in figure 2.2.
The table shows that there are three dimensions to distance in software
teams: Temporal distance, geographical distance and sociocultural distance.
Especially the factors communication and coordination are highly relevant to
collaboration. For example, a high temporal distance reduces opportunities

10 CHAPTER 2. FUNDAMENTALS

Figure 2.2: Impact of dimensions of distance on team related factors [15].

for synchronous communication, while geographical distance generally
eliminates the possibility of face-to-face meetings. In an interview study
[24], practicing software developers overwhelmingly noted this as harmful
for the quality of collaboration and other social factors. This sentiment was
echoed by the interview study conducted as part of this work (cf. chapter 4).

The presented issues add further complexity in the pursuit of designing a
quality model that is universally applicable to collaboration in software
teams. Conclusively, it is most important to determine the factors that all
modes of collaboration have in common and are generally improvable. For
example, evidence might suggest that face-to-face communication is more
conducive to high quality collaboration than online meetings. However,
a team being geographically distanced, or the high employee demand for
home office work, are not facts that can simply be changed. Similarly,
sociocultural distance between team members may present difficulties for
collaboration, but cannot be eliminated in cases when teams are globally
distributed. Consequently, including aspects like communication richness,
or prevalence of face-to-face meetings as a quality aspect in the model would
reduce its usefulness for many teams. Instead, improvable commonalities
between all these modes of communication are sought out. For example,
the quality of Information Exchange and Shared Understanding (cf. chapter
3) within all of those teams are aspects which can be analyzed, measured
and improved. Therefore they are much better suited as aspects within a
universally applicable quality model.

2.4. RELATED WORK 11

Lastly, the existence of both agile and traditional teams needs to be
acknowledged. Though these two types of teamwork differ in terms of
methods and emphasis on collaboration, Lindsjorn et al. [16] found that
collaboration quality (measured through TWQ) and its effects are not
greater in agile teams than in traditional ones. This is discussed in more
detail in section 2.4.2.

2.4 Related Work

Many works had an influence on this thesis, however a select few offered
large amounts of contributions to the eventual model. This section serves
the purpose of briefly outlining those works, crediting their contributions
and highlighting the key differences, demarcating this work from the existing
literature.

2.4.1 Interview Study about Social Factors by Sasse

In his 2023 master’s thesis, Sasse conducted an interview study about social
factors in modern software projects [24], prompting the initial motivation
for the research questions that eventually became the center of this work.
The author interviewed 20 practicing German software developers, which
were mostly biased towards being project leads. Since the conclusions
presented in the paper were mainly about social factors in general and not
merely about collaboration, all interview transcripts were read in full to gain
first insights about industry expert opinion on collaboration. Consequently,
most of the following quotes are taken directly from the raw interview
transcripts and will not be found in the paper. Furthermore, all quotes have
been translated from German.

Many participants made statements within the interviews that denoted the
importance of collaboration. One participant compared the importance of
the quality of collaboration with the quality of the individual:

“The quality of the individual and the collaboration of the others is almost
on the same level.”

Another participant highlighted that problems with collaboration lead to
blockages of the entire project:

“I always work in teams and when the collaboration doesn’t fit, then nothing
works. I mean, then just nothing progresses and thus collaboration is the

most important[...].”

12 CHAPTER 2. FUNDAMENTALS

Furthermore, the author asked the participants to rank social aspects in
terms of importance. The results are shown in table 2.1. As can be seen,
collaboration is ranked the second most important social aspect by the
participants, with 75% of participants regarding it as important.

Social Aspect Amount
Communication 19
Collaboration 15

Trust 10
Team leading 9
Error handling 9

Motivation 6
Relationship with customer 6

Knowledge transfer 4
Conflict handling 2
Cultural factors 0

Table 2.1: Importance of social factors in modern software projects.
Translated and modified from [24].

Another very important finding from the interviews, which was also explicitly
noted within the work, was the strong interdependence of social factors,
including collaboration. Participants frequently stated that factors are
dependent on one another, or even equating two of them. Two participants
noted the requirement of trust for collaboration:

“Well, trust and collaboration are almost the same point here. You need a
certain base trust to conduct a collaboration.”

“Collaboration and trust are in very strong relation. Well, they are almost
inseparably linked, collaborating in a trustful relation is one aspect for now.”

Another participant noted how good collaboration automatically leads to
the improvement of other factors:

“I’ve long thought about choosing knowledge transfer [in the ranking of
social factors], but I reckon it comes automatically through collaboration.”

While some participants talked about how good collaboration can and should
be encouraged, others took good collaboration for granted. One participant
noted, that collaboration just “has to work” in a professional relationship,
even if the people do not like working with each other. Another participant
also took high quality collaboration for granted when other factors are given,
again demonstrating interdependence, but also showing a lack of nuance
when it comes to all the factors that constitute collaboration:

2.4. RELATED WORK 13

“Trust, motivation. If I have those, then the collaboration is good anyway,
right?”

This was just an excerpt of insights about importance of collaboration and
the impact of other social factors on collaboration gained from the interview
transcripts. These insights were highly influential in the first shaping of the
quality model and will be referenced again in chapter 3, since they offer
partial justification for the presence of certain aspects within the quality
model.

2.4.2 Teamwork Quality (TWQ) and related studies

Hoegl and Gemuenden’s work regarding teamwork quality factors was the
basis for much research into the topic. In their 2001 paper “Teamwork Quality
and the Success of Innovative Projects” [12], the authors seek to answer the
following questions: “What is teamwork and how can it be measured? Why
and how is teamwork related to the success of innovative projects? How
strong is the relationship between teamwork and various measures of project
success such as performance of team member satisfaction?” As discussed in
2.2, the authors use the terms teamwork and collaboration interchangeably,
describing TWQ as being a comprehensive concept of the collaboration in
teams. Thus their findings are extremely relevant to this work. Even more
relevance comes from their validation: They tested the relationship between
TWQ and project success, as well as developer satisfaction using data from
575 team members of 145 German software teams. As such, their work
presents strong evidence for assumptions about collaboration in software
teams.

The authors determined six facets with which to describe the quality
of teamwork: Communication, Coordination, Balance of Member
Contributions, Mutual Support, Effort and Cohesion, shown with brief
descriptions in figure 2.3. They reported the following findings regarding
TWQ: Firstly, the quality of collaboration in teams can be captured through
the six facets of TWQ. Secondly, they found a relationship between TWQ
and the success of innovative projects, measured through effectiveness
and efficiency of team performance, as well as the personal success of
team members (measured through satisfaction and learning). These two
findings already cement the six TWQ facets as mandatory considerations
for the quality model of this work. Lastly, they found that the magnitude
of relationship between TWQ and team performance varied with the
perspective of the rater (for instance team member vs team leader). That
being said, their work also contains certain limitations and shortcomings:

14 CHAPTER 2. FUNDAMENTALS

Figure 2.3: Hoegl and Gemuenden’s six facets for Teamwork Quality [12].

First, all of the facets were measured using standardized questionnaires
(five-point answer scale), with three to ten items per facet, which is a
comparatively subjective metric. The problem with this arises when
looking at their independent variable measurements: Measures of team
performance and personal success of team members was also measured
using questionnaire scales, using the same raters (with the exception of
customer rating for project effectiveness). Thus, the authors themselves
note, that they cannot establish a causality between TWQ and the outcome
factors. Therefore, the relation could have simply been found due to the
perception of well-functioning teamwork and the perception of a good result
being highly interlinked in the eyes of the raters (which were members,
leaders and managers of the team themselves). The metrics suggested for
the quality model in chapter 7 demonstrate, that there are more objective
ways to measure some of the collaboration facets in software teams (though
for the more social-sided aspects questionnaire scales cannot be avoided).

Secondly, while the facets were validated in software teams, they are
highly generic and do not take into account special needs of collaboration
specifically within the domain of software engineering, many of which only
came to light after the time of the study. In contrast, the quality model
developed within this work is highly specified to software teams, with some
quality aspects even being entirely exclusive to software engineering.

2.4. RELATED WORK 15

Lastly, it is assumed that the model was validated in exclusively traditional
teams (in contrast to agile ones). This assumption is made because of the
fact that the study was conducted shortly prior to 2001, the year the Agile
Manifesto [3] was published.

Hoegl and Gemuenden’s work on TWQ led to many follow-up papers.
Weimar et al. [28] extended the TWQ model with three additional facets
in a 2017 paper: Coordination of Expertise, Value Sharing and Trust. The
first factor is a management factor concerning itself with efficient resource
management and thus is not considered a part of collaboration as defined
in this paper (see section 2.2). They tested their modified model using
questionnaire scales with 252 team members and stakeholders, showing a
significant correlation between the model and team performance. Thus,
Value Sharing and Trust are valuable additions to the quality model.

Lindsjorn et al. [16] studied the TWQ facets in agile teams and compared
the impact of collaboration (as defined by TWQ) on agile and traditional
projects, shown in figure 2.4. Again, they were able to show a strong
correlation between the TWQ model and project success, as well as personal
success. However, even though the two modes of teamwork show strong
discrepancies in respect to the six TWQ facets, and despite agile methods
emphasizing teamwork more than traditional development methods, the
study did not find teamwork quality to be higher than in a similar survey
on traditional teams [12]. They also found that the effects of teamwork
quality is not greater in agile than in traditional teams, thus demonstrating
a high need for measurable quality of collaboration for both types of teams.

16 CHAPTER 2. FUNDAMENTALS

Figure 2.4: Comparison of TWQ facets between traditional teamwork and
agile teamwork. From [16].

Chapter 3

Conceptualization

This chapter offers a structured presentation of the quality model based on
literature, including all of the subdimensions and quality aspects. Since
the literature is far from unequivocal on the topic of collaboration, some
amount of arbitration was required for the creation of the model. Thus, this
chapter will contain argumentative elements to justify the categorization and
presence of the single quality aspects within the model.
The model will be presented subdimension by subdimension, with the last
section of this chapter offering a final overview and visualization of the model.
It should be noted, that the model synthesized from literature was only the
first draft and went through slight alterations based on the findings of the
subsequently conducted interview study described in chapter 4.

3.1 Methodology

In addition to the raw interview transcripts from the related work by
Sasse [22] presented in chapter 2.4.1, an extensive literature analysis was
conducted on the terms “collaboration” and “teamwork” in the research
domain of software engineering, with the application of backward and
forward snowballing for the more relevant papers. A multitude of papers
was read, with a total of 14 papers being taken into consideration for
the model based on the inclusion and exclusion criteria shown in figure
3.1. All types of software teams were valid objects of observation for the
purposes of this model, as discussed in chapter 2.3. Key quality aspects
for collaboration were extracted from all works. Aspects, which did not
directly concern themselves with collaboration as defined in chapter 2.2
were excluded. For some aspects, further research in the domain of social
studies and psychology was analyzed for the gathering of corresponding
measurement scales. Therefore, some of the more social aspects are defined
in greater detail in chapter 7.

17

18 CHAPTER 3. CONCEPTUALIZATION

Figure 3.1: Inclusion and exclusion criteria for the literature analysis.

Frequently mentioned aspects, or aspects with strong evidence, were
documented, combined based on similarities, and categorized into
subdimensions. The subdimensions are visualized in figure 3.2 and
will be explained with all of their quality aspects in this chapter. All of the
subdimensions, except for Technical Cohesion, were also directly mentioned
in literature. Due to the highly interdependent nature of socio-technical
aspects [24], many of the aspects could be argued to be well positioned in
multiple subdimensions. Therefore, a special focus was set on validating
the positioning both in subsequent interview study (cf. chapter 4) as well
as the survey (cf. chapter 5).

Figure 3.2: First level of the model, showing the six subdimensions based
on literature analysis.

3.2. COORDINATION 19

In order to avoid bloating the subsections of this chapter with repeated
references, table 3.1 shows an overview of all subdimensions and aspects
with the literary sources that mention the term or describe the concept as
important for collaboration.

Subdimension Quality Aspects

Coordination [2][12][28][29]
Software Process Framework [2][21][27]
Infrastructure [2][29]
Leadership [24][27]

Communication [2][12][28][27]
Information Exchange [2][12][14][4]
Shared Understanding [2][12][27]
Error and Conflict Resolution [24][21]

Knowledge and Expertise Sharing [2]
Peerage [1][27]
Mutual Support [24][12][28]

Technical Cohesion [own] Source Code Level Collaboration [6]

Motivation [24]
Mutual Benefit [2]
Shared Values [27]
Engagement [24][2]

Social Cohesion [12][28][16]

Trust [24][27][12][28]
Respect [24]
Sympathy [24][20]
Group Membership [24][12][28][27]

Table 3.1: Summary of the model’s subdimensions and quality aspects with
their corresponding mentions in literature.

3.2 Coordination

The subdimension Coordination envelopes all collaboration mechanisms
which have a coordinate or structural function for the team. These quality
aspects are mostly prerequisital in nature, meaning they facilitate or support
a good collaboration process, but are not directly part of the process itself.
However, due to their significant impact on all collaboration that happens
within the team, they serve as somewhat of a foundation for all teamwork
and thus are worthy of inspection. Ideally, these aspects are already set
before a project’s start, but can be adjusted during the project if required.
The term is explicitly mentioned multiple times in literature.

20 CHAPTER 3. CONCEPTUALIZATION

3.2.1 Software Process Framework

A software process framework, such as Scrum1 (which is even explicitly
defined as a “collaboration framework”), defines many roles, artifacts,
responsibilities and events within the software development process, which
all have an impact on collaboration. The roles, for example, may indicate
important avenues for collaboration. The events, such as the meeting
structure of the Daily in Scrum, present a foundation for other collaborative
aspects such as communication. Furthermore, some studies found that
progress reporting aids collaboration through synchronization of knowledge
[2][27], while others found that frequent iterations increase the motivation
within the team [2][21]. Common practices advocated by frameworks, such
as code reviews or pair programming, aid the knowledge and expertise
sharing between team members. Conclusively, attuning the software process
framework to the goals and requirements for collaboration is vital to its
success.

3.2.2 Infrastructure

Infrastructure describes the structural component of Coordination that
enables collaboration through an adequate environment, especially through
digital tools. Whitehead et al. [29] categorize tool support for collaboration
into four broad categories, which are supplemented with modern examples:

1. Model-based collaboration tools, such as UML2, allow developers to
collaborate on a specific representation of the software.

2. Process support tools represent the development process. This includes
version control systems, such as git3, which have become arguably
irreplaceable for the development of large software projects in teams.

3. Awareness tools aim to inform developers about ongoing work of others
in order to avoid conflict. Tools for dependency management, which
have been shown to improve collaboration [2], could be named as an
example of awareness tools. Another popular awareness tool is the
Kanban methodology4.

4. Collaboration infrastructure tools make it possible for engineers to co-
ordinate their work among one another. This includes tool integration
such as data integration or control integration, ensuring that tools are
aware of the activities of other tools and can take appropriate action.

1https://www.scrum.org/resources/what-scrum-module
2https://www.uml.org/
3https://git-scm.com/
4https://www.atlassian.com/agile/kanban

3.3. COMMUNICATION 21

Additionally, in an increasingly distributed software development land-
scape, collaboration infrastructure also includes digital communication
tools (such as Slack5). Mode and frequency of digital communication
and meetings have been shown to have an effect on collaboration [4].

In cases of centralized teams in a classical office environment, the physical
composition of the office is also a part of the Infrastructure aspect, since
it can be more or less conducive to collaboration (i.e. through more open
modern office designs).

3.2.3 Leadership

Leadership structure varies highly depending on team structure. While more
traditional teams may have a clearly defined leader role, agile teams might
be mostly self-led and organized. However, in both cases, there needs to
be a hierarchically superior party that can make final decisions in cases of
disagreement or mediate escalated conflicts, which cannot be resolved by the
team members themselves. Furthermore, leadership can be an avenue for
encouraging organizational politics within the team, which facilitate better
collaboration (such as a culture of showing appreciation or organizing team
building events) [24].

3.3 Communication

Communication is likely the most expected and self-explanatory subdimen-
sion when thinking about what contributes to good collaboration and is
consequently most frequently mentioned in literature. Due to the high
diversity of software team structures, the goal of this part of the literature
analysis was to identify quality aspects which adequately describe the quality
of communication regardless of communication mode (i.e. face-to-face
meetings versus online meetings versus e-mail). Therefore, Communication
within this model describes how information is processed, exchanged and
shared between team members, with Error and Conflict Resolution being
included as a “special communication need” [21].

3.3.1 Shared Understanding

Shared Understanding is an established term and an ongoingly researched
concept explicitly mentioned in multiple papers. In short, Shared Un-
derstanding can be defined as the absence of misunderstandings. Batra
et al. [2] note that, for example, a mismatch in expertise can result in
misunderstandings. They state the following:

5https://slack.com/intl/en-gb

22 CHAPTER 3. CONCEPTUALIZATION

“The way to eliminate misunderstandings and uncertainties about the
software product requires that the team members [...] communicate with

each other to reach a shared understanding.”

Therefore, Shared Understanding is both an important requirement for
high quality communication, while also being the result of high quality
communication. This clearly justifies the positioning of the quality aspect,
while also demonstrating a strong interaction with the superior subdimension
of communication. The existence of misunderstandings between team
members and stakeholders of a project has been stated as a main cause
of project failure [28].

3.3.2 Information Exchange

Information Exchange describes the raw part of communication that involves
information being transmitted from one party to another. This is likely
the most substantial aspect of communication which is present in all
forms of communication, regardless of global and temporal distribution
of the individual team members. Information Exchange revolves around
the process of information, which has previously been externalized by a
team member, being internalized by a different team member. It includes
direct communication, such as face-to-face meetings or phone calls, but
also includes indirect communication, such as e-mails and all types of
documentation.

3.3.3 Error and Conflict Resolution

Errors and conflicts are unavoidable events in all large scale software teams.
When encountering a committed error, it can be a very sensitive issue
which needs to be handled correctly. Practicing developers in an interview
study [24] noted, that it is important to ask the right questions when
somebody made an error, otherwise team members might be hesitant to
admit mistakes in the future. Instead of looking for someone to blame
and asking “Who is responsible for this error?” it is more constructive and
socially advantageous to ask “How did the error happen and how can we avoid
similar mistakes in the future?”. Therefore, communication is at the center
of Error and Conflict Resolution. Similarly, Paasivaara et al. [21] describe
problem-solving practices as an “extremely important communication need”.
Therefore, high quality communication needs to include a constructive and
open error culture, justifying the positioning within the communication
subdimension.

3.4. KNOWLEDGE AND EXPERTISE SHARING 23

3.4 Knowledge and Expertise Sharing

The sharing of knowledge and expertise in the domain of software engineering
goes past mere information exchange. Due to many popular teamwork
practices in modern software teams (such as pair programming or code
reviews), the quality model deserves an explicit subdimension for all these
mechanisms.

3.4.1 Peerage

Peerage, as used by Augustin et al. [1], describes important interactions
between peers, both on a social and a technical level. The authors first
identified this aspect as a key difference between early 2000s organizational
software development and successful online open source projects. It was
concluded to be a reason for why collaboration in these online projects has
higher quality and produces superior software compared to commercially
available alternatives. The mechanisms have been widely recognized since
then as a unique need for collaboration in software teams.

Traditional office work can often include high pressure, competitive
environments, where the employees compete for recognition and praise from
their superiors. While a competitive environment could boost motivation
for individual tasks [12], it also restricts the mutual support and expertise
sharing that is vital for collaborating and growing as a software team.
Similarly, the validation in software teams is also more effective when it
comes from people of similar or superior expertise in terms of programming.
A manager with little programming knowledge cannot validate the quality
of a developers work as well as a fellow developer. This is one of the reasons
code reviews have been established as a standard collaboration practice
in modern software teams [27]. Additionally, when the dynamic between
peers is ideal, the acknowledgment of one’s work should also be sought
out from peers, rather than from one’s boss. Augustin et al. [1] noted
that one of the motivations of the developers in successful open source
projects was to impress other skilled developers, which increased the quality
of their work. Lastly, the education and training within highly technical
teams teams also happens between peers. An example for peer education in
software teams is high level documentation, or the well-known practice of
pair programming, which includes a constantly high transfer of knowledge
and expertise between developers.

24 CHAPTER 3. CONCEPTUALIZATION

3.4.2 Mutual Support

According to Hoegl and Gemuenden [12], mutual support is the willingness
between team members to help and support each other in carrying out their
tasks. In software teams, this often includes sharing one’s knowledge or
expertise with other developers. It is very important for mutual support,
that the team atmosphere is not too competitive, especially in regards to
seeking praise from a superior. Otherwise, the developers could be much
less likely to help and support each other.

As noted by a practicing developer in an interview study [24], software
teams can include ego-driven personality types, who may think they are
infallible. In these cases, it is almost more important that the team member
is willing to let themselves be supported. This is also an important part of
high quality Mutual Support and likely requires good levels of trust between
team members.

3.5 Technical Cohesion

Technical Cohesion describes collaboration on an exclusively technical level,
such as how the developers are interacting with each other on a source
code level. This subdimension was inspired by the work of Caglayan et
al. [6], in which they study the effect of developer collaboration activity
(purely technical) on software quality in two large scale projects. The
authors studied the impact of collaboration networks on defect proneness in
software projects. They presented collaboration networks as a valuable tool
for measuring technical collaboration in software teams through the metrics
of the graph itself.

At first, it may seem redundant to explicitly look at technical collaboration,
when it could be argued to be the result of the quality of collaboration
as a whole. However, the authors also cite, from a previous work, that
it has been empirically observed, that the collaboration structure on a
purely technical level may be significantly different from the collaboration
structure on an organizational level. Previous research concluded “dramatic
differences between the organizational team structure and the actual code-
level collaboration structure.” [6]. Therefore, it was considered worthy of
separate inspection within the model.

3.5.1 Source Code Level Collaboration

Source Code Level Collaboration describes how developers interact purely on
a code base level. It is a dynamic that can automatically be generated from
many repository systems (for example git) through collaboration networks.

3.6. MOTIVATION 25

Caglayan et al. [6] offer a brief introduction into collaboration networks in
their previously mentioned paper. An example of a very simple collaboration
network is provided in figure 3.3. In the network graph, developers represent

Figure 3.3: Sample collaboration network from [6].

a node. If developers collaborated on at least one software module, an
edge is drawn between their nodes. Collaboration, within this context, is
exemplified by the authors:

Example: “[...] two testers have originated two issues. A developer changed
the same software module related to the issue.”

In this case, it is assumed implicitly that the two developers have collabo-
rated. This assumption is supported by developer interviews conducted in
three open source software projects by Meneely et al. [19]. Many rich metrics
in regards to technical collaboration can be extracted from the collaboration
network through the metrics of the graph itself, such as centrality, degree
and betweenness, making it a very easily measurable quality aspect. In our
example we can already identify some potentially problematic dynamics from
the graph. We can see that there are two sub-groups in the graph, namely
A,B,C and D,E,F,G,H. Between these groups, collaboration only happens
between developer C and D, who form a bridge. If either developer becomes
unavailable, there may be no avenues for cross-collaboration between the
developers of the two sub-groups. Of course, this is a simplified example and
real collaboration networks (see figure 3.4) are a lot more complex, which is
why they can only be analyzed through metrics instead of manual inspection.

3.6 Motivation

Motivation is likely the most individual-centered subdimension. being more
of a social aspect, it is rarely mentioned in literature, however based on the
opinion of practicing software developers [24], it is frequently mentioned as
an important requirement for a good collaborative process. Therefore, when
looking at how to achieve high quality collaboration, it is relevant to analyze
how to increase the team members’ motivation for collaboration.

26 CHAPTER 3. CONCEPTUALIZATION

Figure 3.4: Collaboration network extracted from a real world project,
taken from [6].

3.6.1 Mutual Benefit

Mutual Benefit boosts motivation for collaboration through personal en-
richment of the collaborating parties. This can come in many shapes.
Some team members may feel they already benefit enough through the
financial compensation they receive for their work. Others might take this
for granted and might require additional benefits, such as being able to learn
something new through the collaboration. For example, by collaborating
with technically skilled peers or working on advanced technologies which
offer a learning experience for the developer. What is most important for
Mutual Benefit is the personal perception of each developer that they get
something adequate from their work.

3.6.2 Shared Values

A congruent perception between team members of what is important within
the team is a vital factor for a good collaborative process. This may
include both moral and technical values. For example, if there is a strong
discrepancy in degree of perfectionism between team members, one party
might be left unsatisfied with the result of the work, while the other might
feel that they are wasting too much time for marginal increases in quality.

3.7. SOCIAL COHESION 27

An example for the difference in technical values is the following: In
a project developer A and developer B are part of a software team.
Developer A values code simplicity and readability very highly. Meanwhile,
Developer B values code efficiency very highly and is ready to heavily
increase the complexity of a module for a minor performance increase.
These two developers have conflicting values, which may result in decreased
motivation for collaboration. An example for a difference in moral values
would be the individual’s opinion on the team’s ideals in regards to
social interactions. While some developers of a team might like frequent
social interactions and might desire more personal exchange, other, more
solitary, developers could be annoyed by frequent meetings or planned social
activities. This will always leave one fraction unsatisfied, resulting in a
negative impact on motivation.

Aligning these values and compromising on them within a team can
increase the motivation for collaboration [28].

3.6.3 Engagement

Engagement envelopes all personal factors which contribute to an increase
in involvement or commitment to the collaboration. While Engagement
could technically be measured by tracking the productivity of individual
developers over time, the contributing factors are often highly individualized:
“Will the project be a success? Do I think the project has a valuable purpose
or mission? Do I like the people I’m working with? Is the work itself
interesting? Will my work be acknowledged?”. This makes engagement
another highly subjective quality aspect which can likely only be measured
by capturing the personal perception of a team member.

Batra et al. [2] note that involvement and commitment increase the
longer a developer is part of a team and the more cumulative collaborative
successes take place. Conclusively, it is both a contributor to high quality
collaboration, while also being strengthened by it. It probably also has high
levels of interaction with the perception of Group Membership (cf. chapter
3.7.4).

3.7 Social Cohesion

Social Cohesion describes general social aspects which are important for the
quality of collaboration in all types of teams. Consequently, they are also
highly important for software teams. The term is vaguely mentioned as
“cohesion” in some literature [12], but requires more detailed inspection in
order to methodically increase its quality. Social cohesion within a team
can improve communication, increase motivation and reduce conflicts [28].

28 CHAPTER 3. CONCEPTUALIZATION

However, it is likely the least studied subdimension within software teams
(though heavily studied in general social research). Consequently, many
of the aspects in this subdimension are mostly sourced from interviews of
the personal accounts of practicing software developers without substantial
backing from literature relevant to software engineering.

3.7.1 Trust

Trust between team members is frequently named as an absolute prerequisite
for collaboration [24] and is possibly the most important contributor to Social
Cohesion. Mayer et al. [17] define trust in an organizational context as
follows:

“the willingness of a party to be vulnerable to the actions of another party
based on the expectation that the other will perform a particular action

important to the trustor, irrespective of the ability to monitor or control the
other party.”

Trust within a team is a supporting mechanism for teamwork, influencing
many processes such as the willingness to share information and expertise,
communicate openly, give honest feedback or admit errors [28][24]. Salas et
al. [22] define mutual trust as follows:

“The shared belief that team members will perform their roles and protect
the interests of their teammates”

Conclusively, trust in a fellow team member can mean many things: Trust
in their ability, trust in their reliability, or the trust in their good intentions
and best effort given, without the need for monitoring that team member.
Examples for where these forms of trust find direct application in software
engineering are code reviews and dependency management.

3.7.2 Respect

Respect is an aspect that was deemed very important by practicing software
developers [24], but was not explicitly mentioned in relevant literature. Thus,
it is an aspect which is possibly overlooked in software engineering literature.
While some might take it for granted, a lack of respect within a team was
stated as a reason for severe issues with collaboration. Especially in cases
of superiority in skill or hierarchy, it is most important that the members
of a team talk to each other as equals. A participant in the interview study
by Sasse et al. [24] mentioned an anecdote, in which a technically excellent
developer constantly belittled the work of a team member. The belittled
team member slowly started refusing to communicate and eventually refused
to partake in meetings with the belittling team member. The interviewed

3.7. SOCIAL COHESION 29

developer stated that they found the actions of the belittled team member
reasonable and would also refuse to work with someone who did not respect
them. The stated experiences of software developers could suggest that a lack
of respect impacts communication, lessens motivation and severely damages
the social cohesion of a team.

3.7.3 Sympathy

Sympathy describes the congruence of understanding and feeling between
team members. It is likely the most personal and hard to influence quality
aspect of the entire model, as it revolves around the personal relationships
of the individual team members. Mullen et al. [20] stated an “interpersonal
attraction of team members” being important for (social) cohesion. However,
similarly to Respect, it was mostly mentioned as important by practicing
software developers [24] and rarely explicitly mentioned in relevant literature.
Developers stated that working together is more enjoyable if you personally
like the people you work with. Higher sympathy could also lead to people
viewing their team as their social circle which could lead to them remaining in
the same collaborative constellations for longer, which in turn has a positive
impact on involvement and commitment [2]. It is often attempted to increase
the sympathy between team members by engaging them in social, non work-
related activities with each other (team building events) [24].

3.7.4 Group Membership

An adequate feeling of being a part of the team is sometimes defined as
the cohesion of the team itself [28]. It envelopes abstract concepts such as
“team spirit” [12] or a sense of belonging. Mullen et al. [20] explicitly state
that “an adequate feeling of togetherness and belonging is needed to achieve
high quality collaboration” . It is in many ways similar to Sympathy, however
Group Membership exists in relation to the entire team, while sympathy
can be more or less strong between individual members of a team. High
perception of group membership leads to higher motivation to maintain the
team [12] and higher team orientation [27]. It is likely a concept that is
enabled through continuous collaboration and shared successes in a team, as
well as high quality of the other social aspects (Trust, Respect and Sympathy).
It is also attempted to be increased through team building events [24].

30 CHAPTER 3. CONCEPTUALIZATION

3.8 Overview and Further Categorization

The first draft of the model was concluded after many decisions about
the inclusion and categorization of the quality aspects had to be made.
These were sometimes partial arbitration due to the ambiguity in literature.
Therefore, there was a high need for validation in regards to these decisions.
In order to adequately explain the model to potential interview candidates,
a visualization of the model was prepared, which can be seen in figure 3.5.
In order to make the visualization more digestible for first time viewers,
the model was subdivided into further categories. On the horizontal axis,
the aspects were subdivided into a technical and social plane (with aspects
in the middle being defined as socio-technical). Furthermore, on a vertical
axis the aspects were subdivided into aspects prerequisital for collaboration
(i.e. Coordination and Motivation) and substantial collaborative aspects (i.e.
Technical Cohesion and Knowledge and Expertise Sharing). Communication
falls into both the prerequisital and substantial plane for collaboration. It is
notable, that while it was highly anticipated before the literature review, the
concept of “documentation” was, to the best of knowledge, not used in any
literature on what constitutes high quality collaboration in software teams.
While it is indirectly included in the quality aspects Peerage and Information
Exchange, it was not directly included as a quality aspect due to a lack of a
literature reference.

3.8. OVERVIEW AND FURTHER CATEGORIZATION 31

F
ig

ur
e

3.
5:

F
ir

st
dr

af
t

of
th

e
qu

al
it
y

m
od

el
,b

as
ed

on
lit

er
at

ur
e.

T
he

vi
su

al
iz

at
io

n
is

su
pp

le
m

en
te

d
by

ca
te

go
ri

za
ti

on
in

to
m

or
e

or
le

ss
so

ci
al

,a
s

w
el

la
s

pr
er

eq
ui

si
ta

la
nd

su
bs

ta
nt

ia
la

sp
ec

ts
.

32 CHAPTER 3. CONCEPTUALIZATION

Chapter 4

Interview study

In order to get initial feedback on the model which, so far, has mostly been
based on literature, an interview study was planned in order to validate the
model and possibly gain new insights. The main focus of the interviews
was to validate the model for completeness in order to ensure that no major
aspects were forgotten and that no aspects were completely out of place.
The secondary focus was on validating the correct positioning of the quality
aspects within the subdimensions. Even if no major disagreements were
found, the interviews could serve to confirm the various decisions which were
made as part of the conceptualization and thus strengthen the model for the
subsequent survey study. The interviews were conducted in German. This
chapter outlines the details of the interview structure, their participants and
the findings that led to eventual changes of the model.

4.1 Study Design

Two research questions were formulated to aid the design of the interview
structure:

1. Which quality aspects or subdimensions, if any, are missing from the
model?

2. Which quality aspects could be better positioned under a different
subdimension?

As the main purpose of the study was to validate the model for completeness,
a structured interview would certainly have been unsuitable due to the low
degrees of freedom in the possible answers of the participants. However,
since the exploration of the interviewees should take place within the
context of the quality model, some structure had to be given, including
a fundamental explanation of the model and its purpose. However, only
the subdimensions were given and explained to the participants. Revealing

33

34 CHAPTER 4. INTERVIEW STUDY

the individual quality aspects could have conditioned the participants too
much and could have prevented them from thinking about possible quality
aspects based on their professional experience. Therefore, a semi-structured
interview guide was designed, where relevant tangents and anecdotes of the
interviewees were constantly encouraged and welcomed. Possible follow-up
questions were prepared in case the participant answered questions in a
certain way. In order to best answer the research questions the following
interview guide was created:

1. Welcoming: This section mainly served the purpose of offering a
brief overview of the interview to the participant and of building initial
rapport.

• The participant was greeted and an appreciation for their time
and participation was expressed.

• An outline of the topic was given.

• A rough estimate for the time and structure of the interview was
given.

• The pre-signed data protection agreement was briefly recapped
and the participant was informed that the recording will now be
started.

2. Initial personal questions: To gather some personal data and
encourage active thought of the participant, some personal questions
were asked before transitioning into the main topic.

• Question: “How old are you and how long have you been working
in software development?”

• Question: “In which contexts and constellations have you worked
in teams to create software?”

• Question: “How important was the quality of collaboration in these
contexts?”

• Question: “Did your experiences in any of those teams signifi-
cantly differ in terms of collaboration?”

– If “yes”: “How did the differences impact the team and how
were the deficiencies handled?”

• Question “Do you know what a quality model is?”

– If “yes”: Let participant attempt to explain it and correct
possibly inaccuracies.

– If “no”: Briefly explain quality models.

4.1. STUDY DESIGN 35

3. Model disclaimer: In this section, the quality model for collabora-
tion was superficially explained in order to prepare the participant for
the subsequent exploratory section.

• The participant was informed that a brief overview of the quality
model would be given to them and that the interviewer will just
go over the subdimensions, talking about the individual quality
aspects at a later point. It was assured that the participant was
free to ask questions at any time.

• The participant was explicitly encouraged to give as much
feedback and critique of the model as possible.

• A visualization of the model, including the six subdimensions
without quality aspects, was shown and explained to the par-
ticipant.

4. Key Questions: During this main part of the interview, the
participant was mostly encouraged to think about their own ex-
periences, recall anecdotes, and explore as much as possible. For
each subdimension (i.e. Communication), the participant was guided
through the following process:

• Question: “What comes to mind when you think about «subdimen-
sion» in regards to collaboration?”

– Possible follow-up or nudge: “What constitutes or contributes
to the quality of «subdimension» in software teams?”

• Next, the researched quality aspects of the subdimension were
revealed and compared with the statements of the interviewee.
Agreements were noted, disagreements were discussed.

• Question: “Do you think that the researched quality aspects are
accurately positioned within «subdimension», or would some be
more fitting in another subdimension?”

• Question: “Overall, can you think of any further important quality
aspects that contribute to «subdimension» that have not been
discussed so far?”

5. Closing Question: After the model was discussed in its entirety with
the participant, they were given a last chance to think of anything that
contributes to collaboration.

• Question: “In regards to everything we have talked about, is there
anything else you would change or add to the model?”

6. Ending: the ending section served the purpose of concluding the
interview and reminding the participants about the conditions of the
interview.

36 CHAPTER 4. INTERVIEW STUDY

• The participant was again thanked for their participation.

• The participant was reminded that the gathered data would be
anonymized and published as part of a master’s thesis.

• The participant was informed that the recording would be stopped
at that moment.

A pilot interview was conducted with an academic researcher, before the
interview guideline was finalized and applied for the interviews on the real
participants.

4.2 Participants

The interview was conducted on four participants (excluding the pilot
participant) who were all practicing software developers with multi-year
experience of varying lengths and domains. Since the main focus of the
interview study was to identify bigger potential oversights or inaccuracies,
a small participant group was deemed sufficient considering the group
had adequate diversity in work experience. Some demographics of the
participants are outlined in table 4.1. The most valuable diversity of the

Number Age Experience Occupation
P1 28 2.5 years Junior Software Developer
P2 28 3 years Software Developer/Researcher
P3 28 7 years Senior Software Developer
P4 60 31 years Enterprise Architect

Table 4.1: Interview study participants.

participants likely lay in the varying types of their organization and the
resulting diverse experience of software team constellations. Participant P1
was a team member of a regular software team in a small size software
development company. Participant P2 was working as a software developer
and researcher for a health related state institution, which means he
was simultaneously part of many different, often cross-functional teams.
Participant P3 was working for a large German automobile manufacturer,
which resulted in many different types of software team constellations, both
fully local software teams as well as team constellations with exceptionally
large geographical distance (i.e. a team where P3 was the only member
working from Germany, while the rest of the team was based in India). The
last participant, P4, had multi-decade experience as a software developer,
further experience as a software architect and was working as an enterprise
architect during the time of the interview. He worked fully remote for a very
large international conglomerate, where his team was based in four different
countries, making remote work the only possible mode of collaboration.

4.3. MAIN FINDINGS AND REVISION OF THE MODEL 37

4.3 Main Findings and Revision of the Model

All participants were able to contribute valuable, experience-based anec-
dotes, which strengthened existing quality aspects, broadened their defi-
nitions and even prompted the addition of further quality aspects. All
participants managed to identify important quality aspects for each of the
subdimensions. Sometimes, the participants approached a subdimension
very similarly to the research-based model, listing almost identical quality
aspects. In other cases, they approached a subdimension from a different
perspective, leading to different quality aspects, while still being unifiable
with the researched model.

4.3.1 Motivation

Motivation was likely the subdimension the participants were most eager
to talk about. P2 defined Motivation by subdividing it into intrinsic and
extrinsic motivation. This is an interesting and different approach, which
is still congruent to the model, where Engagement and Shared Values are
covering intrinsic motivational factors, while Mutual Benefit describes all
external contributors to motivation. The participant noted that the revealed
aspects were congruent with his view on motivation. Both participants P3
and P4 mentioned appreciation being important for motivation. P3 referred
to the companies’ appreciation for the IT division as a whole (he noted
that they are often secondary to the engineering division of the automobile
manufacturer). P4 referred to appreciation for one’s personal work. This was
an important addition, however it was deemed a contributor to the existing
quality aspect of Engagement, broadening its definition. Furthermore, the
concept of appreciation is further included in the Peerage/Peer Validation
quality aspect and partially covered by the Leadership aspect (organizational
politics being brought into teams, including organizational appreciation).
Both participants also mentioned a large degree of freedom in their own
work and design decisions as motivating. However, this can be a personal
preference with some developers possibly appreciating more clearly defined
constraints. Thus, it was also interpreted as a contributing factor for
Engagement. P3 also expressed the opinion, that money stops being a
strong motivator after a certain point which is quickly achieved in software
development, thus needing further motivators, such as being able to work
with new technologies or knowing that the software product will be used by,
and help, many people.

38 CHAPTER 4. INTERVIEW STUDY

4.3.2 Coordination

Coordination was the subdimension where the participants’ own thoughts
were most identical with the existing model. The participants all named
quality aspects which were researched, with P2 even naming all three
of the existing quality aspects. Nevertheless, there were many valuable
additions and anecdotes from the participants. P3 and P4 noted that the
term Infrastructure can be misleading, as it can be interpreted under more
technical meanings in the domain of software engineering. P3 mentioned
that it is important for the infrastructure to allow platforms, through which
the developers can freely choose the software tools they wish to use. He also
noted the overall structuring of the teams within the organization as part of
coordination, which is a valid point that was not included due to the model
focusing on intra-team collaboration. When talking about Leadership, he
strongly expressed his opinion that putting the organizational politics over
everything else leads to poor coordination. It was also mentioned that the
organizational mentality in regards to work from home options influences the
quality of collaboration, which would be included under Leadership.

4.3.3 Communication

When talking about Communication, the participants mostly had
different approaches for defining the subdimension. Multiple participants
talked about quality of Communication being influenced by the type of
communication channel used, which is a valid argument but is not included
in the model due to the reasoning presented in chapter 2.3. All four
participants talked about openness being important for Communication,
with P2 and P3 explicitly mentioning an open error culture and blame-free
environments. An open communication is indeed important. However, the
degree of openness in communication is likely a result of quality aspects
for Social Cohesion, most importantly Trust and Respect. Furthermore,
the result of the openness of communication can be indirectly measured
by the three existing quality aspects in the Communication subdimension.
Therefore, it was not explicitly added as a quality aspect.

P3 contributed an anecdote about the importance of a balance in
communication. In a previous software team, he was the only developer
working from Germany in a team that was based in India. As a result, he
often felt excluded in the information exchange of the group, suspecting
that much information was exchanged informally outside of team meetings.
The metric which will be suggested for the Information Exchange quality
aspect covers this by analyzing communication network metrics such as
centrality (cf. chapter 7), which would be well suited to identify the
problematic dynamic described in the anecdote. P4 expressed the opinion,

4.3. MAIN FINDINGS AND REVISION OF THE MODEL 39

that Communication and its quality aspects are too complex and need to be
further subdivided into a “fourth level”. This is a valid concern, considering
the level of detail you can go to when analyzing communication. However,
in order to keep the model balanced and comprehensive, the suggestion was
not included in any revisions.

4.3.4 Knowledge and Expertise Sharing/Peerage

When explaining Peerage to the participants, it quickly became clear, that
the quality aspect contains too many distinct and important facets, which
were often individually referred to by the participants as part of Knowledge
and Expertise Sharing. Participants P2 and P3 named “documentation” as
part of Knowledge and Expertise Sharing, with P3 contributing an interesting
anecdote about a company which tried to boost collaboration by monetarily
incentivizing high quality documentation. They mostly referred to high level
documentation (i.e. describing the structure of whole software modules
as opposed to low level code documentation). This contributed to the
assumption, that the education and training between peers is too hidden
within the Peerage quality aspect and likely deserves to be its own aspect
within the model. This assumption was further confirmed by participants P1
and P4, who additionally mentioned practices from their experience which
consisted of team members giving small presentations or lectures to the rest
of the team about new or interesting technologies they are currently working
on. Similarly, the participants frequently mentioned the practices of code
reviews and pair programming as parts of Knowledge and Expertise Sharing,
which led to a large restructuring of the subdimension visualized in figure
4.1. Mutual support was mentioned by P2, who noted that an absence
of competition and pressure is good for both mutual support and social
cohesion.

Figure 4.1: Knowledge and Expertise Sharing turns into the Peerage
subdimension, allowing for more detailed inspection of quality aspects.

40 CHAPTER 4. INTERVIEW STUDY

4.3.5 Technical Cohesion

Technical Cohesion was a subdimension originally only consisting of a
single quality aspect. It was extended as a result of multiple participants
describing a concept which could be summarized under the term Technical
Consistency. P2 talked about how it is important “how coherent and unified
a project is being worked on” and that there has to be a “consistency of
technologies”. This could likely be the result of the participant being a
member of multiple, cross-functional teams. If the team members use
different technologies (i.e. different frameworks or different programming
languages), it is harder for the developers to collaborate in a technically
cohesive manner. P3 also said, that it is important to agree on a technical
basis within a team (listing programming language, platform, provider
and server as examples). P4 echoed a similar sentiment, specifically
naming the example that collaborating parties should use the same
IDE (Integrated Development Environment) if they work with the same
language and that discrepancies have led to problems in his past experiences.

It was previously assumed that, ideally, a perfectly unified and consistent
technical environment is dictated by the Infrastructure quality aspect of the
Coordination subdimension. However, this does not seem to be the case in
some software organizations (partially due to developers sometimes being
members of multiple teams at once). It is also in slight conflict with the
statement made by P3 on the topic of infrastructure, in which he described a
high degree of freedom when choosing software tools from the infrastructure
platform as important. Furthermore, the idea of technical consistency also
describes a facet which has not yet been considered and is likely important
for collaboration: Coding conventions. Inconsistent coding conventions can
complicate effective collaboration, especially in combination with version
control systems. Therefore, Technical Consistency was included as an
additional quality aspect in Technical Cohesion.

No participant named a quality aspect similar to Source Code Level
Collaboration, however, all participants expressed strong interest in the
concept after having it explained to them, with some even mentioning that
they will try to implement ways to measure this in their own software
teams.

4.3. MAIN FINDINGS AND REVISION OF THE MODEL 41

4.3.6 Social Cohesion

P2 said, that it is important for everyone in a team to be hierarchically
on the same level. While this is something that cannot be guaranteed in
all types of teams, treating each other as individuals on the same level is
something that is described within the Respect quality aspect. Furthermore
he noted that having no competition or pressure within the team, as well as
good approaches to resolving conflicts, contributes to Social Cohesion. This
is congruent to the quality aspects Mutual Support and Error and Conflict
Resolution, which were not part of Social Cohesion. Retrospectively, the
participant agreed that the quality aspects are likely better positioned in
their respective subdimensions, however noting strong interdependencies.
Lastly, he noted that shared rituals (such as having lunch together) and
team building activities contribute to the feeling of being a team. These
were noted as contributing factors to the quality aspect Group Membership.

P3 noted that the most important factor for Social Cohesion is having a
shared enemy or goal, and furthermore having a shared understanding of
how to achieve this goal. These thoughts are included in the quality aspects
Shared Values and Shared Understanding. The participant eventually agreed
with their placements, naming these more examples of interdependencies of
quality aspects and other subdimensions. P3 also mentioned an anecdote
where an attempt was made to include the superior of the team division
within the team. He explained that this was a failure due to the vast
hierarchical differences between the superior and the members. When
discussions arised, many team members did not dare contradict the opinion
of the superior. The participant noted that this experiment destroyed much
of the social dynamic of the team.

P4 explained that the social cohesion of his teams was always better
when they were together in person and that there is almost no social
cohesion within his current team, which is fully globally distributed and
socio-culturally distanced. He mentioned that attempts were made to create
social cohesion through team building activities, but these were apparently
not fruitful. This is another example of sociocultural and global distance
negatively impacting the social cohesion of teams.

42 CHAPTER 4. INTERVIEW STUDY

4.3.7 Further Findings and Adjusted Visualization

All participants frequently noted interdependencies between both quality
aspects and subdimensions (for example good Error and Conflict Resolution
being important for Social Cohesion), however, in the end, no explicit
suggestions were made to move any of the quality aspects into a different
subdimension. P3 noted that he definitely wanted to see the aspect of
“documentation” included as a quality aspect in either Knowledge and
Expertise Sharing or Communication. This demand is considered satisfied
by explicitly including Peer Education as a quality aspect, covering the high
level documentation, while Information Exchange also considers various
types of documents.

As expected, multiple participants mentioned high geographical or
sociocultural distances as counterproductive for collaboration, for example
stating that face-to-face meetings are better for communication than online
and hybrid meetings, or in-office-work and shared rituals (such as having
lunch together) being beneficial for the social cohesion of a team. While all
of these comments were reasonable and stem from real world experience,
these factors could not be included in the model due to choosing the
approach of designing it in a way that allows application regardless of
temporal, geographical and sociocultural distances (as argued in chapter
2.3).

While the participants showed consideration for the visualization’s
subdivision into technical and social planes and contextualized some quality
aspects under these categories, no participant engaged with the subdivision
into prerequisital and substantial aspects. Therefore the vertical subdivision
was scrapped from the model. All of the participant feedback led to a
revised visualization of the quality model, shown in figure 4.2, which was
then used for the subsequent survey study.

4.3. MAIN FINDINGS AND REVISION OF THE MODEL 43

F
ig

ur
e

4.
2:

V
is

ua
liz

at
io

n
of

th
e

qu
al

it
y

m
od

el
fo

r
co

lla
bo

ra
ti

on
,b

as
ed

on
lit

er
at

ur
e

an
d

in
te

rv
ie

w
fe

ed
ba

ck
.

44 CHAPTER 4. INTERVIEW STUDY

Chapter 5

Survey

The model was validated for completeness in the interview study, however
due to the relatively low amount of participants there was no quantifiable
data that could be gained from the study. In order to further validate the
model in a quantifiable way, an online survey study was conducted with a
resulting total of 58 validly completed response sets. This chapter describes
the study design as well as the demographics of the participants. Lastly, the
results of the survey are presented through visualization and commentary.

5.1 Study Design

The main focus of the study was to evaluate the importance of the existing
quality aspects in a quantifiable way. This could lead to insights about
certain quality aspects being indispensable, while others could possibly be
left out of the model. The latter aspect is something that could not be
determined from the interview study at all, since the participants were only
asked if any quality aspects were missing from the model, not if any of them
were unnecessary. As a secondary objective and as an additional layer of
validation to the interview study, the participants were also asked if they
found any quality aspects non-optimally positioned or missing entirely from
the model. However, those were optional questions which did not have to be
answered in order to progress through the survey. The design of the study
was guided by two further research questions:

1. How do the quality aspects rank in terms of importance for collabora-
tion?

(a) Which quality aspects, if any, are deemed indispensable for
collaboration?

(b) Which quality aspects, if any, are deemed unimportant enough to
be left out of the model?

45

46 CHAPTER 5. SURVEY

2. Are there any subdimensions or quality aspects missing or non-
optimally positioned in the model?

Similar to the interview study, the participants needed to make their
evaluations within the context of the quality model. Therefore, it was
also necessary to explain the model to them before they could express
their opinion in an informed way. For example, when asking people about
the quality aspects of a subdimension and whether they would be better
positioned in a different subdimension, they first have to roughly understand
all of the subdimensions as defined within the context of the model. This was
a concern for the full completion of the study, as people can be very quick
to abort their participation in an online survey if the content seems too
complicated, wordy, or otherwise bothersome. Therefore a special emphasis
was placed on keeping the necessary initial explanation of the model as brief
and simple as possible. For the same reason, the entire survey was planned
to only take an average of 15 to 20 minutes in total. The survey was designed
as follows:

5.1.1 Personal Questions and Explanation

The first part of the survey served the purpose of informing the participants
about the conditions of the study and to very briefly explain and outline
the quality model to them. In addition, the participants were asked about
their age and length of work experience. This data was gathered to find
possible correlations between the age or work experience of a participant
and their degree of opinionation, as well as their priorities in regards to
what constitutes high quality collaboration. The initial explanation only
consisted of definitions of the concepts “collaboration” and “quality models”,
as well as brief, one-to-two sentence, descriptions of each subdimension with
a visualization of the quality model. As explained, this was kept as concise
as possible in order to avoid people closing the survey after being confronted
with too much information at once.

5.1.2 Rating the Quality Aspects

In the main section of the survey, the participants were asked to rate the
quality aspects in terms of importance for collaboration. In each step, a
closer look was taken at the subdimensions one at a time. Each of their
quality aspects was explained to the participants, with the explanation
of the corresponding subdimension and the visualization of the model (cf.
figure 4.2) being left on the page in order to offer a reminder and help for
contextualization to the participants. The participants were asked to rate
the importance of the quality aspects on a 10-point-scale, with “1” meaning
entirely unimportant and “10” meaning extremely important. Rating each
aspect was mandatory in order to progress through the study. Furthermore,

5.1. STUDY DESIGN 47

in each step the participants were asked if any of the explained quality aspects
would be better positioned within a different subdimension of the model.
This was an optional question. An example of this question group (for the
subdimension of Coordination) can be seen in figure 5.1.

Figure 5.1: Question group participants answered for every subdimension
after being given an explanation of its quality aspects.

A very important concern for the results of the study was the fact, that
the “importance” of an aspect is something that is likely rated in relation
to other aspects. If all participants were exposed to the quality aspects of
Coordination first, they would likely be subject to an anchoring bias in their
subsequent ratings, rating other quality aspects in relation to the first ratings
they gave (more or less important). For example, if a participant rated the
quality aspects of Coordination with an average of “8”, the average of all their
ratings would be more likely to be close to “8”. If another participant deemed
the quality aspects of Coordination less important, with an average of “5”,
the average of all their ratings would likely be lower than the ratings of the
first participant. Therefore, some degree of counterbalancing was mandatory
in order to avoid severe ordering effects of the survey results. Since the
study population was expected to be sufficiently large, the counterbalancing
was implemented by fully randomizing the order of the middle part of the
survey. Meaning, each participant rated the quality aspects in a different
order, therefore negating systematic ordering effects.

48 CHAPTER 5. SURVEY

5.1.3 Closing Opinions and Comments

In the last section of the survey, the participants were given a final chance
to give any opinion or comment on the model. This is similar to the
final section of the interview study, however it was even more important
for the survey, since there was no opportunity to stimulate potential ideas
and comments through dialogue, instead being the result of the internal
thoughts the participant had during the survey. In three optional questions,
the participants were given the chance to submit free-text answers under a
full visualization of the model:

1. In your opinion, is there a larger subdimension (big rectangles)
missing from the model? If yes, please state the subdimension with
a brief description.

2. In your opinion, is there a quality aspect (unbordered text) missing
from the model? If yes, please also state in which subdimension you
would position it.

3. Looking at the whole model, are there any existing quality aspects
that you would like to position in a different subdimension than the
one they are in right now? If yes, please state the quality aspect and
the more fitting subdimension.

Lastly, they were given the chance to leave comments of any kind before they
were reminded of the data protection details and the study was concluded.

5.2 Participant Acquisition and Demographics

The participants were acquired through a mixture of convenience sampling
in a personal and academic environment, as well as using industry contacts
to advertise the survey to software teams in the software departments of
two different German companies. The survey was exclusively advertised to
candidates who had at least some experience developing software in teams.
Students without external work experience were only allowed participation
if they had at least completed the fifth semester of the undergraduate
program, including the completion of the Software Projekt, a semester long
project where students worked in teams to develop software for real world
customers. To aid the acquisition, the potential participants were monetarily
incentivized in the form of a gift card raffle for completing the survey. The
survey was conducted in English, using the online survey tool LimeSurvey1.
The survey used cookies to remember participants in case they paused
and later continued the survey and to avoid duplicate participation. The
response sets were saved anonymously, but coherently for multiple reasons:

1https://www.limesurvey.org/

5.2. PARTICIPANT ACQUISITION AND DEMOGRAPHICS 49

First, the monetary incentive might motivate thoughtlessly rushing through
the answers, yielding low quality results. Therefore, a response set needed
to be relatable to the completion time to filter out those candidates. Since
the survey was planned to take around 15 to 20 minutes, any response
set completed in under four minutes was deemed invalid. Secondly, since
a comparison of answers between lower and higher experience software
developers was planned, the responses also needed to be relatable to the
participant’s work experience.

A total of 117 people clicked on the survey link, though many closed
the survey again before completing the CAPTCHA and at least some of
the clicks were duplicates from the same individuals. Since cookies were
activated, it is not quite clear how this happened and might have either been
a technical limitation of the tool or due to some of the participants using
anti-tracker tools in their browser. During the first section of the survey
(personal questions and explanation), 31 unique participants aborted
the survey. This confirmed the previously discussed concern, which was
heavily considered in the design of the study, despite best efforts being made
not to lose too many people during the explanation. Only two further people
did not finish the study after getting through the explanation. A total of
61 unique participants completed the survey, three of which completed the
survey in (significantly) less than four minutes, deeming their response sets
invalid. This left a total of 58 valid response sets.

The average age of the participants was 27.4 years, with the oldest
being 60 years old and the youngest being 20. The average working
experience with software development was 4.7 years, the highest being 31
years and the lowest being 0 years (students, who completed the Software
Projekt, but did not have any external work experience, were asked to state
their work experience as 0 years). Further demographic details are shown in
figure 5.2. Unsurprisingly, a correlation between age and work experience
can be seen, with the majority of participants being under the age of 29,
with 3 years or less in work experience. However, as figure 5.2 shows, there
was at least one participant representing roughly every age and experience
bracket within the population, up to the oldest participant with an age
of 60 (which is just a few years under retirement age in Germany). The
study population was divided into two groups, based on work experience,
to allow for comparison and to avoid the majority participant demographic
opinion to outweigh the opinion of the more diverse minority demographic.
Otherwise, if all ratings were only evaluated as a composite average of the
entire study population, the findings would likely favor the priorities of
the less experienced, younger developers. Therefore within the following
evaluation, the population was divided as evenly as possible and analyzed
separately in addition to the composite results. The division was based

50 CHAPTER 5. SURVEY

Figure 5.2: Survey participants’ age and corresponding work experience.

around the median work experience of 3 years (which also roughly subdivides
the group based on age by correlation): Participants with less than three
years of experience were placed in the first group (LowExp), representing
experienced software development students and professional newcomers.
Participants with three or more years of experience were placed in the second
group (HighExp), representing experienced professionals. The resulting
LowExp group consisted of 27 participants with an average experience 0.51
years, the HighExp group of 31 participants with an average experience of
8.35 years.

5.3 Results

This section serves the purpose of presenting the data gathered from the
survey study and commenting on noteworthy findings. The implications
of all finding, including the free-text answers given during the survey, will
later be discussed holistically in chapter 6.

The average quality aspect rating given in the survey was 7.49, with
a standard deviation of 1.87. The average rating of the LowExp group
was 7.71, the average rating of the HighExp group was 7.31. The average
difference in rating between LowExp and HighExp was 0.48 points per
quality aspect. The overall average ratings for all quality aspects are
visualized in figure 5.3, ranked highest to lowest.

5.3. RESULTS 51

F
ig

ur
e

5.
3:

R
at

in
gs

of
qu

al
it
y

as
pe

ct
s,

so
rt

ed
by

hi
gh

es
t

ra
te

d
to

lo
w

es
t

ra
te

d
as

pe
ct

.

52 CHAPTER 5. SURVEY

5.3.1 Coordination

The average rating for quality aspects of Coordination was 6.89. The
average ratings, from high to low, were as follows: Leadership (7.12),
Infrastructure (7.10), Software Process Framework (6.45). The quality
aspects of Coordination were among the more controversial, with Software
Process Framework and Leadership having standard deviations of 2.26 and
2.15 points respectively.

The ratings of the LowExp and HighExp groups are visualized in
figure 5.4. The participant groups were relatively similar in their ratings.
The biggest divergence of the group opinions was Infrastructure, with the
LowExp group rating it an average of 0.78 points higher than the HighExp
group. Software Process Framework and Leadership were two of the few
quality aspects the HighExp group rated higher than the LowExp group.

Figure 5.4: Ratings for Coordination quality aspects.

5.3. RESULTS 53

5.3.2 Peerage

The average rating for quality aspects of Peerage was 7.56. The average
ratings, from high to low, were as follows: Mutual Support (8.59), Peer
Review (7.78), Peer Education (7.34), Peer Validation (6.56). The quality
aspects were relatively uncontroversial.

The ratings of the LowExp and HighExp groups are visualized in
figure 5.5. The differences for Peer Education and Peer Review were very
small between groups. Bigger differences can be seen in Peer Validation and
Mutual Support, with the HighExp group rating both an average of 0.91
points lower.

Figure 5.5: Ratings for Peerage quality aspects.

54 CHAPTER 5. SURVEY

5.3.3 Social Coherence

The average rating for quality aspects of Social Coherence was 7.72.
The average ratings, from high to low, were as follows: Respect (8.76),
Trust (8.07), Group Membership (7.86), Sympathy (6.22). The quality
aspects were uncontroversial, however Sympathy was rated significantly
lower than the rest, being the lowest rated quality aspect of the entire model.

The ratings of the LowExp and HighExp groups are visualized in figure 5.6.
The differences for ratings were relatively small between groups. Merely
Trust was rated noticeably higher by the LowExp group, with an average of
0.78 more points. Group Membership was much more controversial for the
HighExp group.

Figure 5.6: Ratings for Social Coherence quality aspects.

5.3. RESULTS 55

5.3.4 Communication

The average rating for quality aspects of Communication was 8.36,
making it the highest rated overall subdimension. The average ratings,
from high to low, were as follows: Error and Conflict Resolution (8.78),
Shared Understanding (8.16), Information Exchange (8.14). The quality
aspects were uncontroversial, with Error and Conflict Resolution being the
highest rated quality aspect of the entire model, while also being the least
controversial with a standard deviation of only 1.39.

The ratings of the LowExp and HighExp groups are visualized in
figure 5.7. The differences for ratings was relatively small between groups
for all quality aspects, although Information Exchange was considerably
more controversial within the HighExp group.

Figure 5.7: Ratings for Communication quality aspects.

56 CHAPTER 5. SURVEY

5.3.5 Motivation

The average rating for quality aspects of Motivation was 7.07. The average
ratings, from high to low, were as follows: Engagement (7.76), Mutual
Benefit (6.86), Shared Values (6.60). Overall, the quality aspects were
relatively uncontroversial in the LowExp group but controversial within
HighExp group.

The ratings of the LowExp and HighExp groups are visualized in
figure 5.8. The HighExp group rated the quality aspects for Motivation
an average of 0.88 points lower than the LowExp group. This makes the
importance of Motivation the biggest disagreement between the groups,
with Shared Values being the most disagreed upon quality aspect, being
rated an average of 1.23 points lower by the HighExp group.

Figure 5.8: Ratings for Motivation quality aspects.

5.3. RESULTS 57

5.3.6 Technical Coherence

The average rating for quality aspects of Technical Coherence was 7.13. The
average ratings, from high to low, were as follows: Technical Consistency
(7.14), Source Code Level Collaboration (7.12). Both quality aspects were
among the more controversial, with Technical Consistency and Source Code
Level Collaboration having standard deviations of 2.06 and 2.21 points
respectively.

The ratings of the LowExp and HighExp groups are visualized in
figure 5.9. The participant groups rated Source Code Level Collaboration
very similarly with a difference of 0.12 between groups, while they valued
Technical Consistency relatively differently, with the HighExp group rating
it an average of 0.85 lower.

(a) LowExp Group (b) HighExp Group

Figure 5.9: Ratings for Technical Coherence quality aspects.

58 CHAPTER 5. SURVEY

5.3.7 Intra- and Inter-Participant Variance

The results showed higher variance in the ratings within the HighExp group
compared to the LowExp group, with the ratings of the HighExp group
having a standard deviation of 2.09, while the ratings of the LowExp
group only had a standard deviation of 1.55. This initially appears to
strengthen the previous hypothesis that more experienced programmers are
more opinionated, having stronger and more clearly defined opinions on
what is important for collaboration due to their work experience. However,
when looking closer at the average intra-participant variance (the standard
deviation of the ratings of a single participant), the difference between groups
is much smaller, with the HighExp and LowExp group having an average
intra-participant variance of 1.77 and 1.57 respectively. Conclusively, the
increased variance in the ratings of the HighExp group is likely just due to
individual outliers who rated most aspects significantly lower than the rest
of the group. Therefore, the data does not indicate a difference in strength
of opinion between the two groups based on their ratings.

Chapter 6

Discussion

The interview and survey study showed, that different developers have strong
opinions regarding different quality aspects of the model. This chapter will
discuss all previously gathered data, including the yet to be discussed free-
text answers of the online survey, which led to many valuable insights. A
total of 45 free-text answers were submitted in the survey. Subsequently,
final conclusions about the model will be presented, including facets that
could be considered for future iterations of the model, as well as exclusions
from the existing model.

6.1 Importance of the Individual Quality Aspects
and Subdimensions

As already visually presented in figure 5.3, the survey yielded a clear ranking
of the quality aspects, presented again with their average ratings in table 6.1
for closer inspection and discussion. While the HighExp group ranked most

Quality Aspect Rating # Quality Aspect Rating

1 Err. and Conflict Res. 8.78 11 Technical Consistency 7.14
2 Respect 8.76 12 Leadership 7.12
3 Mutual Support 8.59 13 SC Level Collaboration 7.12
4 Shared Understanding 8.16 14 Infrastructure 7.10
5 Information Exchange 8.14 15 Mutual Benefit 6.86
6 Trust 8.01 16 Shared Values 6.60
7 Group Membership 7.86 17 Peer Validation 6.55
8 Peer Review 7.78 18 SP Framework 6.44
9 Engagement 7.76 19 Sympathy 6.22
10 Peer Education 7.34

Table 6.1: Rankings of quality aspects with their respective average ratings.

59

60 CHAPTER 6. DISCUSSION

quality aspects lower than the LowExp group on average, the overall rankings
of quality aspects were very similar between the two groups and will therefore
not be discussed separately from here onward. None of the quality aspects
were considered entirely unimportant, indicating a good selection of quality
aspects. While no quality aspect was averagely ranked lower than 6, there
was a clear difference between the quality aspects considered most and least
important, with Error and Conflict Resolution (8.78) and Respect (8.76)
being considered the most important, while Sympathy (6.22) and Software
Process Framework (6.44) were considered an average of around 2.5 points
less important. Generally, the participants ranked social and interpersonal
factors as more important for collaboration than technical factors, with one
HighExp participant explicitly stating this in a comment:

“In my experience the human and social components of the software project
will have the most impact [...].”

This is also reflected in the overall rankings of subdimensions presented in
table 6.2 (the ratings of the subdimensions are derived from the composite
averages of all its quality aspects). Communication and Social Coherence

Subdimension Rating

1 Communication 8.36
2 Social Coherence 7.72
3 Peerage 7.56
4 Technical Coherence 7.13
5 Motivation 7.07
6 Coordination 6.89

Table 6.2: Rankings of subdimensions with their respective average ratings.

were both classified as purely social subdimensions and considered the most
important, with Peerage being a close third as a socio-technical aspect.
While Motivation was also classified as a social aspect, it was not considered
as important as the others. This could be due to Motivation being more of a
personal factor, while the participants rated the quality aspects most highly
that revolved around the direct social interaction of team members. However,
this does not mean that the more technical aspects are all negligible, with
many participants rating them with 10 as well. Some participants were
even outspoken about their importance in the free-text answers, with one
HighExp participant commenting on Technical Consistency :

“Only equal technical requirements enable, that the team can collaborate.
Shared approaches/shared problems.”

(Translated from German)

6.2. LOW-RATED AND CRITIQUED QUALITY ASPECTS 61

However, based on the ratings and some further free-text answers, certain
lower rated quality aspects needed to be re-evaluated.

6.2 Low-Rated and Critiqued Quality Aspects

Of all quality aspects, four aspects were ranked considerably lower than
the rest, with a minimum 0.26 point difference to the next highest quality
aspect: Shared Values, Peer Validation, Software Process Framework and
Sympathy. Moreover, three of these quality aspects were also all criticized
explicitly, which was generally a rare occurrence in the validation process
and raises the need for discussion.

Shared Values was rated fourth lowest, with an average rating of 6.60. One
participant even suggested the exclusion of the quality aspect:

“The aspect “Shared Values” can be excluded from the model entirely, as the
premise behind the aspect is not logical for all cases. For example, despite

two developers having a different value system and working style in relation
to their work, the differences might even unknowingly become a good fit for
the project and might be mutually beneficial as each developer would solve a
different problem/aspect within the project, instead of conflicting with each

other due to their differences.”

This is a valid point, although the participant refers to the diversity of
values inside a team as valuable, suggesting that the developers should
work on different problems within the project if they have conflicting values.
This is something that concerns good teamwork and team compositions,
but is counterproductive for collaboration, as differentiated in chapter 2.2.
However, it is true that it may not be ideal for a project if all developers have
the same technical priorities and is something that needs to be considered.
Another possible reason for the lower ratings is, that the explanation for
each quality aspect had to be kept short. For Shared Values, an example
was included in the explanation that described a difference in technical
values between two developers. However, as explained in chapter 3.6.2, the
aspect also describes shared moral values and ideals. These might have been
overshadowed in the survey explanation and might otherwise have been rated
higher. One participant even commented on the distinction:

“Maybe separating moral and technical shared values in different aspects
could be useful; the technical part could then also fall into one of the

technical categories.”

This is a very good suggestion, the resulting revision of which will be
discussed in detail in the following chapter.

62 CHAPTER 6. DISCUSSION

Peer Validation was ranked relatively low with an average of 6.55,
however no participant commented negatively on the aspect. In fact, some
participants explicitly suggested adding “appreciation” as an aspect to
the model, which is a facet of Peer Validation. This is also congruent to
statements from the interview study and perhaps, again, due to having to
keep the explanations in the survey very brief. Since there was no explicit
criticism and since there is still adequate reason to believe that validation
by peers is something that people value in software teams, the aspect was
not excluded from the model based on ratings alone.

Software Process Framework was ranked second lowest with an average
rating of 6.44 and was also explicitly criticized. Two HighExp participants
stated the following:

“My perspective might be biased as I usually consult in larger organizations
and frequently the only way to get things done effectively is working around

their processes while making it seem like you’re following them.”

“A lot of software processes and infrastructure topics cost a lot of time
which is better used for the development which will greatly improve the

quality of the software.”

These opinions could come from a general distaste for too high of a focus
on frameworks in organizational contexts, however they raise questions
regarding the justification for the presence of the aspect. The initial
motivation for including Software Process Framework, was that the
framework sets the ground rules and constraints for multiple collaboration-
relevant processes, such as communication (through meeting structure),
collaboration practices (such as code reviews and pair programming) and
some coordinating elements like progress reporting and iteration frequency.
However, the first two are already adequately described after revisions
to the model, with the collaboration practices all being included in the
Peerage subdimension and describing them again through the aspect would
be redundant. The progress reporting and iteration frequency elements
were mostly included, because they were shown to increase motivation, or
to be more exact, the engagement of the developers. Consequently, those
two facets should just be included as contributing factors for Engagement,
while all other facets of Software Process Framework are already adequately
described by the model. Therefore Software Process Framework was
excluded from the model based on survey ratings and feedback.

Sympathy was clearly the lowest rated aspect of the entire model with an
average rating of 6.22. It was not commented on at all in the interview
study and also explicitly criticized in the survey. One HighExp participant
explained the following:

6.3. CONSIDERATIONS FOR REVISIONS 63

“The aspect “Sympathy” is a morally noble quality and its inclusion in this
collaboration quality model is well-appreciated, although it might not be
appropriate to consider this aspect for professional scenarios. Software

engineering and development is a demanding profession which requires a
skilled workforce to undertake complex yet ambitious real-world projects and

implement efficient solutions in time. A trait like “Sympathy”, on the
contrary, might even be unprofessional to harbor to a great level, as it might
unwillingly induce complacency in teams and help unidentified errors persist

in projects.”

The participant explains how sympathy might be a good concept in theory,
but can lead to many problems in professional scenarios, as it might induce
complacency or lead to unidentified errors persisting in projects. Since the
purpose of the model is to eventually be used to improve collaboration in real
software teams, this is very valuable feedback. Sympathy was already one of
the weaker aspects included in the model, since it is hard to measure and
influence, therefore not being the best fit for inclusion in a quality model.
Also, while high sympathy within a team can be both good and bad, the
collaboration should be able to function regardless of the interpersonal liking
of the team members. Consequently, prompted by the feedback and the
fact that it was the lowest rated quality aspect, Sympathy was excluded
from the model. However, the suggested measurement scale for Group
Membership will include Sympathy as an item (cf. chapter 7), as it is not
entirely negligible for the dynamic of the group.

6.3 Considerations for Revisions

As previously discussed, one participant raised the point, that Shared Values
should be divided into shared technical values and shared moral values.
Indeed, the two facets are different enough to be worthy of revising the
aspect. As another participant noted, in the case of technical values it may
not be ideal that they are all identical within a team, rather that they
are congruent with one another. The technical values are something that
impacts the technical cohesion, such as when two developers work on the
same software module and have conflicting values in regards to technical
priorities (i.e. code readability versus efficiency). In this case, it is most
important that the team jointly decides which values are important for
the project (or the individual software module) and then to apply them
consistently. Therefore, the technical value congruence should be included
in the aspect Technical Consistency. Meanwhile, the shared values that
lead to an actual increase in motivation are shared ideals of the team
members in regards to the collaboration, the team and the project. Are the
team members satisfied with the direction of the project? Are the team
members happy with how the team is being led and organized? Are the

64 CHAPTER 6. DISCUSSION

team members on the same page when it comes to frequency and degree
of collaboration within the team? Do the team members have a shared
mission or goal? Therefore, Shared Values will be revised into Shared
Ideals in the model.

Two facets which have been repeatedly mentioned in both interview
and survey study, which are not directly depicted in the model, were
“openness” (or “transparency”) and “appreciation”. These facets were not
ascertained by the literature analysis. However, with the same reasoning as
in the interviews, the facets will not be included explicitly as quality aspects.
Openness is likely the direct result of good Social Cohesion (Trust, Respect
and Group Membership) and a good Error and Conflict Resolution culture.
Including it again separately would be redundant. Appreciation by peers
is included in Peer Validation, while appreciation from an organizational
perspective is included in Leadership (application of organizational politics).
The effects of appreciation are most relevant for the engagement of a
developer, which is a quality aspect already included in the model as well.

Furthermore, some comments were made that suggested adding aspects
to the model which were already clearly intended to be included (such as
one participant suggesting adding “Organizational Policies”, which has been
defined as a clear component of Leadership). This is likely, again, due to
the format of the online survey requiring brief descriptions, which were not
able to convey the full definitions of each aspect without losing the majority
of potential participants. However, they further strengthen the existing
quality aspects they refered to. Another participant suggested adding
“Cultural Aspects” as a subdimension. While it has already been discussed
that sociocultural distance of the team has an impact on collaboration, the
suggestion will not be included since the model follows the approach of being
applicable to all types of teams, both culturally diverse and homogeneous.

6.4 Interdependence of Socio-technical Factors

As already discussed in the fundamentals (cf. chapter 2), the interde-
pendencies between influencing factors in socio-technical systems present a
challenge for the creation of a quality model, since it requires some degree
of categorization. The survey study further cemented this fact through the
statements of various participants. While most participants agreed with the
placements of the quality aspects in the subdimensions, many left comments
nevertheless, stating that a quality aspect would also fit into a different
subdimension:

“I think that shared understanding is correctly positioned here, but might
also be concerned with social cohesion.”

6.4. INTERDEPENDENCE OF SOCIO-TECHNICAL FACTORS 65

“Mutual support seems also to fit in social cohesion or communication I
think”

“I think trust and respect can also be parts of communication, but I think
they rather fit here.”

“Source Code Level Collaboration could also be a part of coordination
(because of exemplary interactions through git etc.)”

“Depending on the project, the leadership might have a huge influence on
the shared values and overall motivation.”

“I think for Peerage, it is important for peers to celebrate their
achievements as a group. Maybe that falls in Group Membership”

These comments do not necessarily provide any specific new insights, but
demonstrate how software developers link together the quality aspects and
subdimensions based on their experience, which solidifies them as important
parts contributing to good collaboration in the real world. Some participants
also very adequately described the interdependencies explicitly:

“Some quality aspects could be part of more than one larger subdimension.
For example: Group Membership contributes to Motivation. If you feel like
you don’t belong to the group and are left out your motivation to participate
in the project goes down. Or peer education contributes to social cohesion
because it mostly improves respect, trust and sympathy for one another.”

“The quality aspects are also dependent among one another. There are
hygiene-factors, which have to be satisfied, like for example a certain level
of salary, so that other aspects become relevant, i.e. appreciation of one’s

work. [...]”
(Translated from German)

“These categories are usually very close coupled [...].”

“I think that a lot of these quality aspects are hard to be evaluated alone. In
large software projects these aspects will almost always influence each other.
Its worth to analyze these influences which would allow more insight into
the relation between quality and these categories. It would be also worth to
explore the factors of lower quality and to match these with the categories

or to derive additional categories.”

66 CHAPTER 6. DISCUSSION

Especially the last comment, while also describing the interdependencies,
exemplifies the need for quality models describing socio-technical aspects
such as collaboration. Due to the strong influences between the aspects,
deficiencies in socio-technical factors can rapidly lead to downward spirals in
software teams. Therefore, models need to exist to analyze the constituents,
so that the problems can be more accurately identified, instead of just
being able to observe the result of good or bad collaboration as a whole.
Furthermore, the participant also raises a good point about possible future
research for the model: Identifying the exact influences between the quality
aspects, including the degree of influence or the impact of patterns that
lead to low-quality collaboration, could lead to even more insight into
collaboration and help more accurately identify and prevent problems in
real software teams.

6.5 Positioning Suggestions and other Comments

Many comments were left regarding the positioning of the quality aspects
within both the subdimensions and the planes of the model (technical, socio-
technical and social). However, the only suggestion that was left by more
than one single participant was moving Peer Education from the technical
to the socio-technical plane.

“If peer education describes not only the technical aspect of organization and
documentation of useful information, then I would move it to the

socio-technical dimension. I think it also implies the willingness of team
members to educate their peers, which would include some level of sympathy

or helpfulness.”

This is well argued and since a lot of education between peers happens
through interpersonal interactions, the suggestion was accepted for the
model.

One participant suggested adding additional colors, for the purposes
of sub-categorization, to make the model less overwhelming on first sight.
However, other comments explicitly praised the model for being clear and
easy to understand (though there may be some degree of survivorship bias,
since all comments came from people who stuck with the survey to the
end). Due to the natural complexity of quality models, some people finding
the model overwhelming at first may be a fact that has to be accepted.

6.6. SUMMARY OF REVISIONS AND FINAL MODEL 67

6.6 Summary of Revisions and Final Model

Based on all feedback gathered, the following changes were made for the final
draft of the model:

• Sympathy was excluded based on low ratings and criticism.

• Software Process Framework was excluded based on low ratings,
redundancy and criticism.

• Progress reporting and iteration frequency, previously facets of Soft-
ware Process Framework, were noted as contributing factors to Engage-
ment.

• Shared Values was changed into Shared Ideals based on feedback,
with technical value congruence being noted as a facet of Technical
Consistency.

• Peer Education was moved from the technical plane into the socio-
technical plane.

All changes are included and visualized in figure 6.1.

6.7 Threats to Validity

Throughout this thesis, most threats to validity have already been discussed
in their respective chapters. The first synthesis of the model, based on
literature, had some degree of arbitration. However, this was necessary
to create a starting point for later validation and discussion of a quality
model. The interview study had a relatively low participant number, but
due to the high diversity of work experience in the participants they were
deemed sufficient to validate the model for completeness. The survey study
had an adequate participant number, but a bias towards younger, less
experienced developers, which could have led to a bias towards their opinion
in composite ratings. This was counteracted by dividing the participant
group and analyzing the results separately. Furthermore, despite the bias,
there was at least one representative for each age and experience bracket.
Lastly, the final revisions to the model, while basing them on holistic analysis
of all gathered information, have not been validated yet. While threats to
validity were considered and handled in best conscience, even richer data
and validation could be gathered in future work, which will be discussed in
chapter 8.

68 CHAPTER 6. DISCUSSION

F
igure

6.1:
F
inalvisualization

of
the

quality
m

odelfor
collaboration,based

on
holistic

discussion
of

literature,interview
s

and
survey

feedback.

Chapter 7

Collaboration Metrics

As explained in chapter 2.1, quality models usually do not include specific
metrics for their quality aspects. Instead, application of the model includes
determining which specific facets to measure by which means through
processes like GQM. Nevertheless, this chapter will serve to supplement
the developed quality model with metric suggestions for each quality aspect
included in the final iteration of the model (cf. figure 6.1). This is for the
purpose of giving potential practical applicants a first starting point for the
usage of the model, as well as being a proof of concept that the included
quality aspects are indeed measurable. Ideally, objective metrics established
in literature were desired for all quality aspects. However, due to the socio-
technical nature of most aspects, most metrics are based on survey scales.
Since this model tries to cater to the specific needs of software teams, many
established survey scales were considered sub-optimal for the application
in software teams. For aspects, for which no satisfying established survey
scales could be found in literature, a new survey scale was constructed, with
the items being inspired by data gathered in the interview and survey. All
suggested questionnaire items are intended as parts of Likert-type scales
(statements for which the degree of agreement is to be expressed).

7.1 Infrastructure

Infrastructure was an aspect described in literature, but not attempted to
be measured. The quality of the infrastructure corresponds to the degree
in which the infrastructure accommodates the needs of the developers.
Following questionnaire items are suggested, based on categorization by
Whitehead et al. [29] and developer feedback:

1. The available tools allow me to communicate with my team effectively.

2. The available tools support the technical collaboration of me and my
team members.

69

70 CHAPTER 7. COLLABORATION METRICS

3. I am informed about the work status of my team members and the
project as a whole.

4. The available tools help me and my team to coordinate our work.

5. My work environment (physical or digital) is conducive to collabora-
tion.

7.2 Leadership

Team leadership is a concept attempted to be measured by literature,
however it is often highly specified to the leadership style. Therefore, instead
of suggesting a metric for a particular leadership style, own questionnaire
items are suggested based on what developers noted as important in regards
to leadership in interview and survey comments.

1. The leadership supports the team in cases of unresolved conflicts or
disagreement.

2. The leadership tries to encourage and support collaboration between
me and my team members.

3. The leadership offers direction for the project, without restricting my
team too much in its freedoms.

4. My team is considered an important part of the organization and is
appreciated accordingly.

7.3 Technical Consistency

Since this aspect was derived from the interview feedback, no suitable metric
could be found in literature. The following items are suggested based on
developer opinion:

1. Whenever possible, all members of the team use the same software
tools and frameworks for the same needs.

2. My team has clearly established coding conventions which are consis-
tently enforced in the project.

3. My team agrees on which technical values take priority in which parts
of the project.

4. The technical expertise of my team members is adequate for the
discussion of necessary technical topics.

7.4. SOURCE CODE LEVEL COLLABORATION 71

7.4 Source Code Level Collaboration

As presented by Caglayan et al. [6] (cf. chapter 3.5.1), Source Code
Level Collaboration can be measured through collaboration networks,
which can be automatically extracted by VCS software. The metrics used
correspond to the metrics of the graph itself, for example degree, centrality,
or betweenness of the individual developers. These metrics can be used, to
identify collaboration patterns and weaknesses, such as bottlenecks or vital
collaboration bridges.

While some literature describes a fully connected collaboration network as
the goal, representing collective code ownership, each team has to determine
their own goals, based on the difference of specialization within a team.
The network metrics can be used to objectively quantify dynamics of the
underlying technical collaboration within a team and are therefore ideal as
metrics for this quality aspect.

7.5 Peer Review

Peer Review is represented through the practices of code reviews and
pair programming in software teams. The occurrence of code reviews is
something that can (and should) first be measured objectively, through
ascertaining how much of the code in the team repository underwent review
processes before being approved. There are also further objective metrics
which can be gathered, such as the average review approval rate, or the
average amount and length of review comments.

However, even in teams where code review is an established practice,
the quality of the review process can differ based on more subjective
metrics. Therefore, the following questionnaire items are suggested to
ascertain the quality of Peer Review :

1. Nobody in the team is above the code review process.

2. I review my peers’ code carefully and to the best of my conscience.

3. I have the impression that my own code is reviewed carefully.

4. Comments made by my peers are sensible and meaningful.

5. Reviewing the code of my peers can be an insightful and educating
experience.

72 CHAPTER 7. COLLABORATION METRICS

7.6 Peer Education

Peer Education was a quality aspect inspired by anecdotes about industry
practices and has therefore no established metric found in literature.
Following questionnaire items are suggested:

1. I frequently learn new things from my peers.

2. We have an adequate amount of events and practices, which are
centered around the shared or reciprocal education of me and my team
members.

3. If I wish to learn more about a part of the project, there exists adequate
high level documentation or equivalent resources for me to do so.

7.7 Peer Validation

Peer Validation was described as a special dynamic in software teams by
Augustin et al. [1], however no established metrics could be found to measure
it. The following items are suggested based on the findings of Augustin et
al. and developer feedback:

1. I wish to impress my peers rather than my boss with the quality of my
work.

2. The quality of my work and my personal abilities are acknowledged
and appreciated by my peers.

7.8 Mutual Support

Cheah et al. [8] measured Mutual Support as part of their paper “Mutual
Support, Role Breadth Self-Efficacy, and Sustainable Job Performance of
Workers in Young Firms”. They adapted four questionnaire items from
previous social interaction research, which are an adequate fit for software
teams. These items were adapted, with the addition of a fifth item based on
developer opinion. The items are as follows:

1. The team members support and complement each other as well as they
can.

2. Discussions among the team members are constructive and beneficial.

3. Proposals and suggestions of team members are respected.

4. I work within a cooperative ambiance.

5. My team members are willing to accept help.

7.9. TRUST 73

7.9 Trust

Trust in organizational contexts is a concept which underwent a multitude
of attempts to measure it in research. McEvily et al. [18] reviewed literature
on the topic of measuring trust in organizational research. They found 129
different measures of trust, almost all of which lacked independent replication
by a third party. Furthermore, most measures revolved around trust of
asymmetric relationships (i.e. manager to employee, customer to vendor).
They only identified five noteworthy measures of trust. The authors did
not explicitly suggest a metric (neither did any of the papers they identified
as noteworthy measure of trust), but conclusively present a framework for
measuring trust, shown in figure 7.1. The five measures are highly congruent
with the recounting of experiences made by developers within the research
of this paper and will therefore be used to construct five questionnaire items:

1. I trust in the competence and responsibility of my team members.

2. I believe that my team members are honest and act in good faith.

3. I trust in the benevolence and integrity of my team members.

4. I trust that my team members will handle their tasks, without the
constant need to check up on them.

5. I can rely on my team members.

Figure 7.1: Framework for measuring trust by McEvily et al. [18].

74 CHAPTER 7. COLLABORATION METRICS

Another promising paper, which was released in the same year as the litera-
ture analysis by McEvily et al. and could therefore not be contextualized in
the validity of trust research, is “Measuring trust in teams: Development and
validation of a multifaceted measure of formative and reflective indicators of
team trust” by Costa et al. [9]. The authors present a well-constructed
questionnaire scale for measuring trust in teams, however it consists of 38
items and thus might be too extensive to be used in the scope of this quality
model. However, it is still noteworthy for teams who wish to delve deeper
into the analysis of trust within the team.

7.10 Respect

While there are some objective indicators of respect, such as fair wages,
hierarchical position or equal treatment, it remains an aspect that is
hard to measure beyond subjectivity. In their paper “Unraveling respect
in organization studies”, Grover et al. [11] deconstruct the different
constituents of respect in organizations, based on literature research. The
most noteworthy distinction is the differentiation between appraisal versus
recognition respect. Recognition respect refers to the “attitude or belief about
how people should be treated generally”. It includes “being treated politely
and not being insulted”, as well as listening and cooperating as morally
equal parties, as they are fundamental matters of human dignity. Appraisal
respect, in contrast, refers to respect shown to an individual based on their
perceived individual merits. In the context of software teams, both aspects
are vital and thus, two items are constructed for both distinctions of respect:

Recognition Respect:

1. I am being treated politely and with respect in my team.

2. My team members listen to me and treat me as an equal.

Appraisal Respect:

1. My individual merits are acknowledged and respected.

2. I am given the impression, that I am an important part of the team.

7.11 Group Membership

Lindsjorn et al. [16] disclosed their measurement items for measuring the
group cohesion of software teams. It is deemed adequate to measure Group
Membership in the scope of the quality model. Items marked with a “*” are
weighed negatively:

7.12. SHARED UNDERSTANDING 75

1. This teamwork is important to the team.

2. It is important to team members to be part of the team.

3. The team does not see anything special in this teamwork*.

4. The team members are strongly attached to the team.

5. All team members are fully integrated in the team.

6. There were many personal conflicts in the team*.

7. There is mutual sympathy between the members of the team.

8. The team sticks together.

9. The members of the team feel proud to be part of the team.

10. Every team member feels responsible for maintaining and protecting
the team.

7.12 Shared Understanding

Shared Understanding is an aspect which can be measured by objective
numeric metrics through the application of a Pathfinder Algorithm on paired
comparisons of relevant concepts. A paper outlining this measurement in
software teams is “Measuring Shared Understanding in Software Project
Teams using Pathfinder Networks” by Braunschweig et al. [5]. While
the paper describes the process in detail, and should be referred to if a
practical application is desired, a short overview will be given: The process
starts with a careful concept selection. Explicit terms or phrases used by
the team in specification, source code, or interviews, which participate in
collaboration in some form are chosen. The terms are then rated on similarity
to all other terms by every team member. This rating creates a Pathfinder
Network (the nodes representing the concepts and the edges representing
their relationship), which can be analyzed mathematically. This way, Shared
Understanding within a software team can be adequately measured and
analyzed.

7.13 Information Exchange

Similar to Shared Understanding, Information Exchange also has approaches
to be analyzed mathematically through graphs. Klünder et al. [14] present
a method in their paper “Modeling and Analyzing Information Flow in
Development Teams as a Pipe System.”. In this approach, they model the
information exchange in software teams as a pipe system, including both solid

76 CHAPTER 7. COLLABORATION METRICS

information, which includes long-term, repeatedly accessible information
stores such as source code or written documents, as well as fluid information,
which includes undocumented meetings, face-to-face communication and
implicit knowledge. Their approach allows extracting certain information
flow metrics, such as the centrality, degree and betweenness of the developers
in the communication network. The model also allows finding critical paths
such as bottlenecks, which could lead to loss of information. Due to its
complexity, the process and its metrics cannot be fully presented in the
scope of this work and the referenced paper should be referred to directly.
However, the resulting metrics of the information flow networks by Klünder
et al. are considered an excellent fit to measure Information Exchange as
part of this quality model.

7.14 Error and Conflict Resolution

No established measurements for error and conflict resolution culture could
be found in literature. The questionnaire items are based on the accounts of
practicing software developers by Sasse et al. [24], as well as the interview
and survey studies conducted in the scope of this work:

1. The team does not point fingers when an error was committed.

2. It is more important for the team how a type of error can be avoided
in the future, instead of scrutinizing the one responsible.

3. Conflicts in the team are resolved constructively and efficiently.

4. When it comes to conflicts, I do not feel unfairly treated.

5. I feel like I have an equal voice in case of differences in opinion.

7.15 Mutual Benefit

Mutual Benefit revolves around the personal impression of team members,
that they gain adequately from the collaboration. Based on some question-
naire items by Lindsjorn et al. [16] on topics of work satisfaction and learning
(adapted and filtered), as well as the opinion of developers gathered in this
work, the following questionnaire items were compiled:

1. I feel adequately compensated for my work.

2. I gain something from the collaborative teamwork.

3. I am able to acquire important know-how through collaboration.

4. The collaboration within my team promotes me personally.

5. The collaboration within my team promotes me professionally.

7.16. SHARED IDEALS 77

7.16 Shared Ideals

Shared Ideals is the result of feedback based on the survey study, rather
than being based on literature. Therefore, the questionnaire items were
constructed based on developer feedback without any literature reference:

1. I agree with the mission of the team and project.

2. I am happy with the direction of the project.

3. I am satisfied with the way the team is being led and organized.

4. The frequency and degree of collaboration within the team is adequate.

7.17 Engagement

An established measurement scale for general work engagement is the
“Work Engagement Scale” by Utrecht et al. [25]. The authors categorize
engagement in three categories: Vigor, dedication and absorption. However,
many of the questionnaire items are not well suited for the application within
this quality model. A clear example of this are the first three measures for
vigor: “1. At my work, I feel bursting with energy 2. At my job, I feel strong
and vigorous 3. When I get up in the morning, I feel like going to work”.
These items merely serve to assess the level of engagement of an individual
and are not designed around improvable measures. Therefore, instead of
adapting the whole scale, select items describing general work engagement
were adapted and supplemented with more specific items inspired by what
software developers noted as important for their engagement:

1. I find the work that I do full of meaning and purpose.

2. I enjoy my work.

3. I am proud of the work that I do.

4. To me, my work is challenging.

5. I am confident in the success of the project.

6. I am satisfied with the amount of freedom I have in my work.

7. I experience frequent successes, such as meeting milestones or satisfying
iterations of the software, with my team.

8. I feel like my personal qualities and achievements are acknowledged
and appreciated by the organization.

78 CHAPTER 7. COLLABORATION METRICS

Chapter 8

Review and future work

8.1 Conclusion

Within the scope of this work, a quality model for collaboration in software
team was constructed based on literature, expert interviews and an online
survey. It underwent multiple validation processes and revisions. The model
was well received by practicing software developers, with the included quality
aspects all being considered important for collaboration. Thus the model is
deemed appropriate for the application in software teams. The quality model
is an answer to both research questions formulated in the introduction of the
thesis:

• RQ1: What constitutes high quality collaboration in software teams?

• RQ2: How can the quality of collaboration in software teams be
measured and improved?

The constituents of high quality collaboration in software teams are
represented through the model’s quality aspects (cf. figure 6.1), answering
the first research question. Improvable metrics for all of the constituents
are presented in chapter 7, answering the second research question.

To the best of knowledge, this is the only quality model (as defined
in chapter 2.1) for collaboration in software teams and furthermore is
the only general model for collaboration which is both highly specific to
software teams (including unique needs and constituents), while also not
being over-fitted to any specific mode of software development.

The data gathered within this work further justified the existence of
a quality model for collaboration, with many statements exemplifying
the need for clearer distinctions of socio-technical aspects through the
acknowledgment of heavy interdependencies between the individual factors.

79

80 CHAPTER 8. REVIEW AND FUTURE WORK

8.2 Future Work

The clear next step for future work is the controlled and monitored
application of the model in one or multiple software projects under the close
guidance of a researcher. This was not possible in the scope of this work due
to limited time and resources. While the model was validated by multiple
software developers, only the real application in software teams can yield
rich data about the effectiveness of the model. Analyzing collaboration in a
software project with the help of the quality model would lead to definitive
insights about the measurability and improvability of the constituents,
as well as answering the question if the improvement of the constituents
actually leads to a noticeable increase in quality of collaboration. Perhaps,
this process could also lead to further inclusions or exclusions of quality
aspects in the model.

Secondly, analyzing the exact interdependencies between the quality
aspects (or subdimensions) could lead to new insights about influences
and event chains in regards to collaboration. This could make problems
with collaboration more analyzable and identifiable. While some sporadic
statements were gathered about which aspects influence one another
within this work, a more systematic approach (for example through paired
comparison and Pathfinder Algorithms) is necessary to make definitive
statements about the interdependencies.

Bibliography

[1] L. Augustin, D. Bressler, and G. Smith. Accelerating software
development through collaboration. In Proceedings of the 24th
International Conference on Software Engineering, pages 559–563, 2002.

[2] D. Batra, W. Xia, and M. Zhang. Collaboration in agile software
development: Concept and dimensions. Communications of the
Association for Information Systems, 41(1):20, 2017.

[3] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al. The
agile manifesto, 2001.

[4] B. Boyd, A. Townsley, C. Walter, C. Johnson, and R. Gamble.
Examining collaboration among student teams relying on web
applications to coordinate software development. 2017.

[5] B. Braunschweig and C. Seaman. Measuring shared understanding
in software project teams using pathfinder networks. In Proceedings
of the 8th ACM/IEEE international symposium on empirical software
engineering and measurement, pages 1–10, 2014.

[6] B. Çaglayan and A. B. Bener. Effect of developer collaboration activity
on software quality in two large scale projects. Journal of Systems and
Software, 118:288–296, 2016.

[7] V. R. B. G. Caldiera and H. D. Rombach. The goal question metric
approach. Encyclopedia of software engineering, pages 528–532, 1994.

[8] S. Cheah, S. Li, and Y.-P. Ho. Mutual support, role breadth self-
efficacy, and sustainable job performance of workers in young firms.
Sustainability, 11(12):3333, 2019.

[9] A. C. Costa and N. Anderson. Measuring trust in teams: Development
and validation of a multifaceted measure of formative and reflective
indicators of team trust. European Journal of Work and Organizational
Psychology, 20(1):119–154, 2011.

81

82 BIBLIOGRAPHY

[10] D. Ford, M.-A. Storey, T. Zimmermann, C. Bird, S. Jaffe, C. Maddila,
J. L. Butler, B. Houck, and N. Nagappan. A tale of two cities: Software
developers working from home during the covid-19 pandemic. ACM
Trans. Softw. Eng. Methodol., 31(2), dec 2021.

[11] S. L. Grover. Unraveling respect in organization studies. Human
relations, 67(1):27–51, 2014.

[12] M. Hoegl and H. G. Gemuenden. Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence.
Organization science, 12(4):435–449, 2001.

[13] International Organization for Standardization. ISO 25010, soft-
ware and data quality. https://iso25000.com/index.php/en/
iso-25000-standards/iso-25010. Accessed: 24.06.2024.

[14] J. Klünder, O. Karras, N. Prenner, and K. Schneider. Modeling and
analyzing information flow in development teams as a pipe system. In
MoDELS (Workshops), pages 730–737, 2018.

[15] F. Lanubile. Collaboration in distributed software development. In
International Summer School on Software Engineering, pages 174–193.
Springer, 2006.

[16] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. R. Bergersen, and T. Dybå.
Teamwork quality and project success in software development: A
survey of agile development teams. Journal of Systems and Software,
122:274–286, 2016.

[17] R. C. Mayer, J. H. Davis, and F. D. Schoorman. An integrative model
of organizational trust. Academy of management review, 20(3):709–734,
1995.

[18] B. McEvily and M. Tortoriello. Measuring trust in organisational
research: Review and recommendations. Journal of Trust research,
1(1):23–63, 2011.

[19] A. Meneely and L. Williams. Socio-technical developer networks:
Should we trust our measurements? In Proceedings of the 33rd
international conference on software engineering, pages 281–290, 2011.

[20] B. Mullen and C. Copper. The relation between group cohesiveness and
performance: An integration. Psychological bulletin, 115(2):210, 1994.

[21] M. Paasivaara and C. Lassenius. Collaboration practices in global
inter-organizational software development projects. Software Process:
Improvement and Practice, 8(4):183–199, 2003.

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

BIBLIOGRAPHY 83

[22] E. Salas, D. E. Sims, and C. S. Burke. Is there a “big five” in teamwork?
Small group research, 36(5):555–599, 2005.

[23] D. Samadhiya, S.-H. Wang, and D. Chen. Quality models: Role and
value in software engineering. In 2010 2nd International Conference on
Software Technology and Engineering, volume 1, pages V1–320–V1–324,
2010.

[24] D. Sasse. Master’s thesis: Interviewstudie zu sozialen aspekten in
modernen softwareprojekten, 2023.

[25] W. B. Schaufeli, A. B. Bakker, and M. Salanova. Utrecht work
engagement scale-9. Educational and Psychological Measurement, 2003.

[26] B. Singh and S. P. Kannojia. A review on software quality models. In
2013 International Conference on Communication Systems and Network
Technologies, pages 801–806. IEEE, 2013.

[27] D. Strode, T. Dingsøyr, and Y. Lindsjorn. A teamwork effectiveness
model for agile software development. Empirical Software Engineering,
27(2):56, 2022.

[28] E. Weimar, A. Nugroho, J. Visser, A. Plaat, M. Goudbeek, and
A. P. Schouten. The influence of teamwork quality on software team
performance. arXiv preprint arXiv:1701.06146, 2017.

[29] J. Whitehead. Collaboration in software engineering: A roadmap. In
Future of Software Engineering (FOSE’07), pages 214–225. IEEE, 2007.

84 BIBLIOGRAPHY

	Introduction
	Problem Statement
	Solution Approach
	Results
	Structure

	Fundamentals
	Quality Models and GQM
	Collaboration versus Teamwork
	State of Collaboration in Software Teams
	Related Work

	Conceptualization
	Methodology
	Coordination
	Communication
	Knowledge and Expertise Sharing
	Technical Cohesion
	Motivation
	Social Cohesion
	Overview and Further Categorization

	Interview study
	Study Design
	Participants
	Main Findings and Revision of the Model

	Survey
	Study Design
	Participant Acquisition and Demographics
	Results

	Discussion
	Importance of the Individual Quality Aspects and Subdimensions
	Low-Rated and Critiqued Quality Aspects
	Considerations for Revisions
	Interdependence of Socio-technical Factors
	Positioning Suggestions and other Comments
	Summary of Revisions and Final Model
	Threats to Validity

	Collaboration Metrics
	Infrastructure
	Leadership
	Technical Consistency
	Source Code Level Collaboration
	Peer Review
	Peer Education
	Peer Validation
	Mutual Support
	Trust
	Respect
	Group Membership
	Shared Understanding
	Information Exchange
	Error and Conflict Resolution
	Mutual Benefit
	Shared Ideals
	Engagement

	Review and future work
	Conclusion
	Future Work

