
Gottfried Wilhelm
Leibniz Universität Hannover

Faculty of Electrical Engineering
and Computer Science

Institute of Practical Computer Science
Software Engineering Group

Extending Use Case Tables with
Explainability Needs

Bachelor’s Thesis

in Computer Science

by

Denise Behrens

First Examiner: Prof. Dr. Kurt Schneider
Second Examiner: Dr. Jil Klünder
Supervisor: Jakob Droste, M. Sc.

Hanover, March 22nd 2024

ii

Declaration of Independence

I hereby certify that I have written this Bachelor’s Thesis independently and
without outside help and that I have not used any sources or aids other than
those specified in the work. The work has not yet been submitted to any
other examination office in the same or similar form.

Hanover, March 22nd 2024

Denise Behrens

iii

iv

Acknowledgement

First and foremost, I am very grateful to my husband Kersten. His
support, patience, and understanding were instrumental in helping me

navigate through the challenges of this academic endeavor. His constant
encouragement and belief in my abilities provided the strength I needed to

persevere during the writing process and throughout my entire studies.

I extend my appreciation to my supervisor, Jakob Droste, for his invaluable
guidance, expertise, and constructive feedback.

I would also like to thank my family and friends for their unconditional
support and encouragement. Their belief in me, coupled with their

willingness to lend a helping hand whenever needed, has been a source of
motivation throughout this journey.

Abstract

Satisfying non-functional requirements, such as explainability, is becoming
increasingly important in the development of new software to improve user
understanding and software quality. Explanations can help users who have
difficulty using a software. Additionally they can explain the purpose and
increase the understanding of certain User Interface (UI) elements. In order
to make the development process more efficient, the need for explainability
should be identified and noted during the planning phase. Possible difficulties
in understanding on the part of the future user group can thus be identified
early on and taken into account directly during development and testing.

This thesis documents the development process of the ‘Use Case Tool’,
including requirements elicitation and documentation, aimed at capturing
explainability needs early on in the software development process. The tool
parses all Use Case tables of a Software Requirements Specification (SRS)
in copyable PDF format and displays them in a UI. Each step of the Use
Cases’ main scenario and extensions can be extended with explainability
needs. The extended Use Case tables can be exported as PDF or CSV files
and reimported into the tool.

To validate the usability of the tool, usability tests with the System
Usability Scale (SUS) were conducted with nine participants. The average
SUS score was 87.8%, indicating excellent usability. In addition, comments
and reactions of the attendees were noted and used to further improve the
‘Use Case Tool’. The results show that the features of the developed tool
are well integrated and that the system was self-explanatory for the study
participants.

v

vi

Zusammenfassung

Die Erfüllung nicht-funktionaler Anforderungen, wie z. B. Erklärbarkeit,
wird bei der Entwicklung neuer Software immer wichtiger, um das Verständ-
nis der Benutzer und die Qualität der Software zu verbessern. Erklärungen
können Benutzern helfen, die Schwierigkeiten bei der Benutzung einer
Software haben. Darüber hinaus können sie den Zweck erklären und das
Verständnis bestimmter Benutzeroberflächen-Elemente verbessern. Um den
Entwicklungsprozess effizienter zu gestalten, sollte der Bedarf an Erklär-
barkeit bereits in der Planungsphase erkannt und berücksichtigt werden.
Mögliche Verständnisschwierigkeiten der zukünftigen Nutzergruppe können
so frühzeitig erkannt und direkt bei der Entwicklung und beim Testen
berücksichtigt werden.

Die vorliegende Arbeit dokumentiert den Entwicklungsprozess des ‘Use
Case Tools’, einschließlich der Anforderungserhebung und -dokumentation,
zur frühzeitigen Erfassung von Erklärungsbedarf im Softwareentwicklungs-
prozess. Das Tool analysiert alle Use Case-Tabellen einer Software Requi-
rements Specification (SRS) im kopierfähigen PDF-Format und stellt sie
in einer Benutzeroberfläche dar. Jeder Schritt des Hauptszenarios und der
Erweiterungen der Use Cases kann um Erklärungsbedarf erweitert werden.
Die erweiterten Use Case-Tabellen können als PDF- oder CSV-Dateien
exportiert und wieder in das Tool importiert werden.

Um die Benutzerfreundlichkeit des Tools zu validieren, wurden Usability-
Tests mit der System Usability Scale (SUS) mit neun Teilnehmern durch-
geführt. Der durchschnittliche SUS-Wert lag bei 87,8%, was auf eine
ausgezeichnete Benutzerfreundlichkeit hindeutet. Darüber hinaus wurden
die Kommentare und Reaktionen der Teilnehmer notiert und zur weiteren
Verbesserung des ‘Use Case Tools’ genutzt. Die Ergebnisse zeigen, dass die
Funktionen des entwickelten Tools gut integriert sind und dass das System
für die Studienteilnehmer selbsterklärend war.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Solution Approach . 2
1.4 Thesis Structure . 2

2 Background and Related Work 3
2.1 Software Requirements Specification 3

2.1.1 Use Cases . 4
2.1.2 Acceptance Testing . 7

2.2 Explainability . 7
2.3 Likert Scale . 7
2.4 System Usability Scale . 8
2.5 Extensible Application Markup Language 10
2.6 Avalonia . 10
2.7 Model-View-ViewModel Pattern 10
2.8 Tabula . 11
2.9 Related Work . 11

3 Requirements Elicitation 13
3.1 Stakeholders . 13
3.2 Functional Requirements . 14
3.3 Non-functional Requirements 15
3.4 Workflow . 15
3.5 MockUp . 16
3.6 Explainability Requirements 18

4 Implementation 19
4.1 Prerequisites . 19
4.2 Development Process . 20

4.2.1 User Interface . 20
4.2.2 Import . 22
4.2.3 Export . 23

ix

x CONTENTS

4.2.4 Add-Ons . 24
4.3 Difficulties . 26

5 Study Design 27
5.1 Participants . 27
5.2 Procedure . 27
5.3 Data Collection . 29
5.4 Data Analysis . 29

6 Results 31
6.1 Quantitative Results . 31
6.2 Qualitative Results . 32

7 Discussion 35
7.1 Discussion of Results . 35
7.2 Improvements . 38
7.3 Limitation and Challenges . 39

8 Conclusion and Future Work 41
8.1 Conclusion . 41
8.2 Future Work . 42

A Acceptance Testing 45
A.1 Test Case 1 - File Import . 45
A.2 Test Case 2 - Choose Use Case 45
A.3 Test Case 3 - Enrich Use Case with Explainability 46
A.4 Test Case 4 - File Export . 46

B Usability Questionnaire 47

C Improvements Screenshots 49

D Contents on the USB Drive 51

Chapter 1

Introduction

Modern software systems are increasingly characterized by the use of
artificial intelligence and complex algorithms. This means that software is
becoming increasingly opaque and incomprehensible to its users [16, 35, 36],
which can lead to a decreasing trust that users have in a software [35]. To
avoid this problem, developers can integrate explanations into the software.
Explanations are intended to help users operate the system or clarify certain
issues for them [16].

1.1 Motivation

Explainability, as a Non-Functional Requirement (NFR), is becoming in-
creasingly important in the development of new software systems [16, 35].
Satisfying NFRs is important for achieving high software quality [15]. One
difficulty is to find out at an early stage where there might be ambiguities
in the use of the software for the future user group. The first step towards
developing a new software is planning. In traditional development processes,
this usually involves writing a Software Requirements Specification (SRS),
which was first defined by the Institute of Electrical and Electronic Engineers
(IEEE) in 1984 [25]. An SRS contains the customer’s requirements for
the software and describes the planned implementation. To get a more
accurate picture of the software’s functionality, Use Cases are written for
each interaction between the system and its actors [29]. This is usually
done in the form of tables, for example based on the template introduced by
Cockburn [17]. When reviewing the Use Case tables, software stakeholders
may already notice ambiguities in the system.

1.2 Problem Statement

The development of new software faces a significant challenge: users cannot
test it until the development or prototyping phase is complete. Consequently,

1

2 CHAPTER 1. INTRODUCTION

the software may lack clarity or explanations, or fail to convey its intended
benefits to users. However, ensuring user satisfaction with the level of
explainability prior to implementation is challenging, as users often have
to rely on their tacit knowledge [19]. Currently, explainability needs are
addressed after implementation, requiring iterative development cycles to
improve them. Users can only provide feedback based on their experience
with the software that has already been implemented, which can then be
taken into account to start with a new iterative development cycle. These
iterative processes increase development time and cost. This underlines the
importance of identifying explainability requirements early in the design
phase, as noted by Chazette et al. [14].

1.3 Solution Approach

The aim of this work is to integrate additional explainability requirements
into software systems as early as possible. The best time to intervene is
during software planning, after the SRS is written. In this thesis, a tool to
extend Use Case tables from an SRS with explainability needs is developed.
The tool can import SRSs in copyable PDF format, from which the Use
Case tables are extracted and displayed. Explanations can be added to the
steps of the main scenario and extensions in the User Interface (UI), which
are displayed in an additional row in the tables when the Use Case tables
are exported. This way, stakeholders that review the Use Case tables can
express their explainability needs at an early stage in development, which
in turn can be taken into account when implementing the software. This
makes the integration of explanations more efficient. Ultimately, it makes the
software easier to understand and more attractive to the user. In order to test
the usability of the developed tool, usability tests are carried out with nine
participants. The tool is being developed for the Software Engineering Group
of Leibniz University, which focuses on planned and structured software
development. Their aim is to use the tool for future studies.

1.4 Thesis Structure

To achieve the above goals, this thesis first discusses the basics of SRS,
explainability, and technical prerequisites in Chapter 2. It also provides a
classification of related work. Chapter 3 covers the requirements elicitation
for the tool to be developed with functional, non-functional and explainabil-
ity requirements. This is followed by the description of the implementation
in Chapter 4, after which the structure of the study is discussed in Chapter 5.
The results of the usability testing are presented in Chapter 6. The discussion
of the results, improvements and limitations of this work are described in
Chapter 7. Finally, Chapter 8 concludes and discusses future work.

Chapter 2

Background and Related Work

This chapter introduces basic software engineering concepts and standards
of software development that are relevant to the understanding of this work.
This is followed by a discussion of related work on parsing and processing
SRS content.

2.1 Software Requirements Specification

In 1984, the IEEE specified what should be written in a good Software Re-
quirements Specification (SRS), and what characteristics it should have [25].
The SRS, as the name implies, is about the collection of requirements from
a customer for a new software to be developed. To maintain flexibility,
these requirements should avoid details about design, project management,
or verification. Only design constraints should be used when necessary. In
addition, all requirements should be ranked to define which requirement is
the most important and which is just an add-on [25].

The SRS should be the product of both the customer’s and the supplier’s
expertise. The customer is an expert in his or her field and is aware of the
requirements for the new software. The supplier is an expert in his or her field
and therefore knows everything about the development process and software
design. Only their combined knowledge can lead to a good SRS [25, 26].

According to IEEE [25], a good SRS should be unambiguous, complete,
verifiable, consistent, modifiable, traceable and usable during operation and
maintenance phase. This means that all requirements should have only one
interpretation, and if the SRS is written in natural language, it should be
checked for ambiguity by someone independent [26]. In order to be complete,
an SRS must include functional and non-functional requirements, as well
as necessary constraints or interfaces [25, 26]. All functions and features
that a software has or should have are expressed in functional requirements.
NFRs are also known as quality requirements or constraints. This means
that the software is restricted to a certain extent. For example, a certain

3

4 CHAPTER 2. BACKGROUND AND RELATED WORK

level of performance, security, or maintainability may be required, so lower-
level requirements are removed from the solution [11, 28]. In addition, it is
necessary to define how the software will react to a variety of valid and invalid
input data. A requirement is verifiable if it is possible to measure whether it
has succeeded or failed. To ensure consistency and modifiability in an SRS,
requirements should not conflict, duplication should be avoided, and changes
should be easily possible. Traceability is required in an SRS so that the
various stages of development can be traced backwards and forwards [25, 26].

2.1.1 Use Cases

Use cases are used within an SRS to clarify how the software being developed
will behave based on its functionality. A Use Case describes the interaction
between an actor, who wants to achieve a certain goal, and the software [18,
23]. Use cases should be written as simple text to avoid misunderstandings
between the supplier and the customer. In addition, Use Cases are used as
a contract between all parties [18].

In 1987, Ivar Jacobson first introduced the idea of Use Cases at
the OOPSLA (Object-Oriented Programming, Systems, Languages, and
Applications) conference [29]. He realized that not all of a system’s behaviors
could easily be written down in a single description. Consequently, it was
more convenient to describe different behaviors separately in order to be
understandable. One of these behaviors, which is further divided into a
dialogue between the user and the system, is a Use Case. The dialogue is
a combination of a user action and a system response. At this point, it
should be clarified that a user is meant to be a person who actually interacts
with the system. In contrast, a user can have different roles. Each role has
different tasks while using the system. A Use Case ends when no more (new)
actions can be performed. Then another Use Case can be triggered [29].

In general, there is not just one right way to write Use Cases. It always
depends on what the goal is that someone is trying to accomplish with a Use
Case. For example, Use Cases can be used to gather requirements, discuss
about future requirements, describe a work process, or create documentation
for the system’s design. When a new system is being developed, black box
Use Cases are written. White box Use Cases are written when the purpose
is a work process. Black box means that there is no need to know the inner
workings of a system, while white box means that it is necessary to know
everything about the inner workings [18].

In Table 2.1, a template for a Use Case table is shown. It is based on
the template and work by Alistair Cockburn [17, 18] and is currently the
template used by the Software Engineering Group. The only difference from
this table is that the actual template is in German. The first row contains
the Use Case number and a brief description of the goal that the Use Case
reflects. This is followed by a longer explanation of the goal of the Use Case

2.1. SOFTWARE REQUIREMENTS SPECIFICATION 5

in its context. The scope describes (part of) the system referred to in the
Use Case, and the level describes the importance of the task or function.
Preconditions define the state of the system or world that the Use Case
expects. Until the state is not completed, the system has a state called
the minimal guarantee. The success guarantee is the state when the goal
is achieved. Stakeholders are people who are directly or indirectly involved
in a Use Case. A primary actor is a person or group with the same role
who primarily gets involved with the Use Case. A trigger is an action in the
system that causes a Use Case to be activated [17, 18]. The main scenario [30]
or main success scenario [17, 18] describes the dialogue between the user
and the system in steps, starting from the trigger and ending with the goal
achieved or the cleanup afterwards. The extensions contain all scenarios that
cause a different action to that of the main scenario, always referring to one
step. Priority and frequency are marked as optional by Cockburn, but are
included in the Software Engineering Group’s template. Frequency indicates
how often this Use Case will occur, and priority reflects whether this is an
important feature [17, 18].

Use Case <1> <goal as a short active verb phrase>
Goal in Context <a longer statement of the goal in context if needed>
Scope <what system is being considered black box under

design>
Level <one of: Summary, Primary Task, Subfunction>
Preconditions <what we expect is already the state of the world>
Minimal Guarantee <the state of the world upon successful completion>
Success Guarantee <the state of the world if goal abandoned>
Stakeholders <other systems relied upon to accomplish Use Case>
Primary actor <a role name or description for the primary actor>
Trigger <the action upon the system that starts the Use Case>
Main scenario <Step> <Action>

1. <put here the steps of the scenario from trigger to goal
delivery, and any cleanup after>
2. < ... >

Extensions <Step> <Branching Action>
1a. <condition causing branching> :
<action or name of sub.Use Case>
1b. < ... >

Priority <how critical to your system / organization>
Frequency <how often it is expected to happen>

Table 2.1: Use Case table template according to Cockburn [17, 18],
adapted for use by the Software Engineering Group

6 CHAPTER 2. BACKGROUND AND RELATED WORK

In order to get an overview and a better understanding of the relation-
ships between all Use Cases of a system, a Use Case diagram can be drawn.
This is typically done using the Unified Modeling Language (UML) [18, 30].
An example is shown in Figure 2.1, which depicts Use Cases of the software
developed in this thesis. Actors are drawn as stick figures and Use Cases
as ellipses. The frame is the system border, which shows everything that is
happening in the system. There are several arrows in UML. In the figure,
there are arrows with an «include» from one Use Case to another. This
means that the Use Case where the line begins is dependent on the Use Case
to which the arrow points. An arrow with «extend» points from one Use
Case to another, interrupting the Use Case from which it comes [18, 23].
Other systems interacting with the Use Cases are drawn as rectangles [23].

Use Case Tool

User

import
SRS

select
Use Case Table

<<include>>

export
Use Case Tables
as PDF or CSV

add
Explainability

<<include>>

<<include>>

Figure 2.1: Example of a Use Case diagram (depicting the Use Cases of the
software developed in this thesis)

2.2. EXPLAINABILITY 7

2.1.2 Acceptance Testing

Acceptance tests are defined at the end of an SRS and acceptance testing
follows the implementation of a system. This is to ensure that the previously
defined Use Cases are fulfilled [27, 29]. Each acceptance test is written
with a setup, user inputs, and corresponding desired outputs. Typically,
the input is an action a user performs on the system, and the output is
the expected response or behaviour of the system [41]. The fact that the
acceptance tests are based on the Use Cases, and therefore the customer’s
requirements, makes it easy for the customer to determine whether the
system is acceptable or not. [41]. In general, acceptance testing is used to
validate the functionality of a developed system. This includes checking the
interactions between the user and the system, as well as the constraints and
interfaces [24]. Examples of acceptance tests are the ones for the software
developed in this thesis, which can be found in Appendix A.

2.2 Explainability

Deters et al. [20] propose the following definition of explainability: “Ex-
plainability is the ability of a software to be explained to an addressee,
given a specific context of use and depending on the goals of the explainer.”
In the context of software systems, the addressee to whom the system is
explained is a stakeholder of the software. Explanations within this context
typically originate from the software system itself, making the system self-
explanatory. Here, the goal is not dictated by the explainer, but rather by the
product owner who has established the explainability requirements for the
software [20]. In a self-explanatory system, explanations should be integrated
into the UI in a meaningful and appropriate way. This means adding
information that the user needs to understand, for example, the system’s
features, but also omitting unnecessary information. In addition, the design
choices of the chosen explanations are important to avoid overwhelming the
user with too much information and to avoid unnecessarily increasing other
NFRs such as resource consumption [16]. Explainability is a NFR [16, 35].
It is linked to and may interfere with other NFRs such as transparency
and understandability [14, 20], usability [14, 16], performance, development
cost, and security [35]. Therefore, it is important to think about the
possible benefits or mismatches of other NFRs with explainability when
doing requirements analysis [16].

2.3 Likert Scale

In 1932, Rensis Likert invented the Likert scale, which is named after
him [37]. Likert scales are used to measure people’s agreement with

8 CHAPTER 2. BACKGROUND AND RELATED WORK

statements [31, 37, 46, 49]. It is important to note that according to Likert,
the statements should be “expressions of desired behavior and not statements
of fact” [37]. This is because a statement of fact leads to a response not
with the person’s current attitude toward the statement, but most likely
with a preconceived attitude. In addition, all statements should be clear
and unambiguous so that there is no confusion in the reader’s mind. Likert
defined that it is beneficial to have half of the questions’ answers (e.g. the
odd ones) on one side of the agreement level and the other half (e.g. the
even ones) on the other side [37]. This helps to prevent participants from
giving habitual answers or from losing concentration as they have to think
about the given statements [12, 37].

To create a questionnaire, several statements are collected. There
should be more statements than the number that will end up in the
final questionnaire, because they will then be tested on people who are
representative of the future test group and sorted out [12, 37, 46]. After
that, the statements that are the most appropriate for the purpose of the
questionnaire will be selected [37]. The level of agreement of each participant
is originally shown in a 5- or 7-point scale [12, 37, 49]. Table 2.2 shows an
example of a 5-point scale where each attitude is assigned to a number (e.g.
Agree = 4) in order to be able to calculate a score [37].

1 2 3 4 5
Strongly Disagree Disagree Undecided Agree Strongly Agree

Table 2.2: 5-point Likert responding format [13, 37, 49]

2.4 System Usability Scale

The System Usability Scale (SUS) is a Likert scale and was developed by
John Brooke in 1996 [12]. It is designed to quickly and easily measure the
usability of a system using subjective sentiment statements [1, 12]. Ten
statements were selected from a pool of fifty statements based on the fact that
they produced the most extreme responses when rated on a 5-point Likert
scale for two systems requiring different levels of knowledge. Table 2.3 shows
the ten selected statements which are given to the participants after they
have tested a system. The odd-numbered statements received a higher level
of agreement when tested with the pool of fifty statements, and the even-
numbered statements received a higher level of disagreement. The selection
of statements from a pool and the arrangement of the statements indicate
that the SUS is a Likert scale, as described in Section 2.3. Within the SUS,
the level of agreement is typically measured with a 5-point Likert scale, as
shown in Table 2.2 [12].

2.4. SYSTEM USABILITY SCALE 9

Number Statement

1 I think that I would like to use this system frequently
2 I found the system unnecessarily complex
3 I thought the system was easy to use
4 I think that I would need the support of a technical person to be

able to use this system
5 I found the various functions in this system were well integrated
6 I thought there was too much inconsistency in this system
7 I would imagine that most people would learn to use this system

very quickly
8 I found the system very cumbersome to use
9 I felt very confident using the system
10 I needed to learn a lot of things before I could get going with this

system

Table 2.3: Brooke’s SUS Statements [12]

After the SUS is performed, the score should be determined. For each
odd-numbered statement (1, 3, 5, 7, 9), subtract 1 from the attitude value.
For example, if statement one (Table 2.3) was answered with ‘Agree’ (=4),
the calculation based on the ranking in Table 2.2, is ‘4’ minus 1, resulting
in a score of 3 for statement one. For each even-numbered statement (2, 4,
6, 8, 10), subtract the attitude value from 5. For example, if statement two
(Table 2.3) was answered with ‘Strongly Disagree’ (=1), the calculation is 5
minus ‘1’, resulting in a score of 4. After doing this for all 10 statements,
sum the results for each respondent and multiply each sum by 2.5 to get the
System Usability (SU). The SU ranges from 0 to 100 [12]. A higher score
means a better usability, as shown in Figure 2.2. Better usability leads to,
but does not guarantee, higher acceptance according to Bangor et al. [1].

Figure 2.2: SUS score and it’s acceptance, by Bangor et al. [1]

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2.5 Extensible Application Markup Language

The eXtensible Application Markup Language (XAML) was developed by
Microsoft for its .NET framework and is based on the eXtensible Markup
Language (XML). It is a declarative language to describe UIs. Each XAML
file contains a file of associated code – the codebehind. This includes handlers
or events whose behaviors need to be implemented [38]. However, it should
be carefully considered whether it makes sense to write the codebehind
directly into the XAML dependent file, or whether it is better to outsource
it to a separate class that is not UI related. One approach could be applying
the Model-View-ViewModel (MVVM) pattern [48], which is described in
Section 2.7.

2.6 Avalonia

Avalonia is a UI framework launched in late 2013 under the name Perspex
by Steven Kirk [8, 32]. Kirk’s plan was to develop a XAML-based UI
framework on an open source basis. He wanted to improve the known bugs
and problems of the existing Windows Presentation Foundation (WPF) UI
framework [32]. Another of Kirk’s goals was to make the framework run on
a variety of platforms, and not just on Windows like WPF does [6, 32].
Today, applications developed with Avalonia can be used on Windows,
MacOS, Linux, Android, iOS, and WebAssembly. A special feature is that
the UI looks and feels identical on all platforms [6, 8]. These approaches
allow developers to develop on a preferred platform for a customer’s desired
platform. In addition, Avalonia enables independent rendering which gives
even more flexibility and customization to its users [6]. As an open source
project hosted on GitHub [7], Avalonia is constantly being improved and
reviewed [6]. Users can ask questions and provide feedback on existing
developments. This way, the community working on the framework is able
to get continuous feedback to develop new features or improve existing ones.
Users are free to add their own features by forking the Avalonia GitHub
project and adding their own code. Since Avalonia is licensed under the
MIT license [7], it is free of charge and can be commercially used.

2.7 Model-View-ViewModel Pattern

The Model-View-ViewModel (MVVM) pattern helps to separate the code for
the UI from the business logic of an application. This allows more freedom
for changes on both sides. It also simplifies testing, maintainability, and
further development. Different developers can work simultaneously on UI
design and business logic [48]. This can limit the cost and time spent on the
application. In addition, the MVVM pattern makes it easier to reuse parts

2.8. TABULA 11

of the code, whether it is the design or the business logic [48].
Figure 2.3 depicts the connections between the View, the ViewModel,

and the Model. The solid lines from right to left show that the View has
knowledge about the ViewModel, and the ViewModel has knowledge about
the Model. This knowledge does not flow in the other direction. The View
is the UI that the user sees when using the software, typically written in
XAML. It should contain as little codebehind as possible. The ViewModel is
and should be used to define properties and commands that are invoked in
the View through data binding. The dashed line from the ViewModel to the
View shows that the ViewModel sends notifications to the View when a state
changes. In the Model, the data model and the business logic are defined.
It is updated by the ViewModel and sends notifications to the ViewModel
when a state changes [48].

ModelViewModelView

Send notifications Send notifications

Data Binding
and Commands

ViewModel updates
the model

Figure 2.3: Model-View-ViewModel pattern according to Stonis [48]

2.8 Tabula

Manuel Aristarán started developing Tabula in late 2012 [4] and presented it
to the public in an article in early 2013 [3]. Tabula was developed as a web
application. It was designed to upload text based PDF files and extract table
data from them. The extracted data was in CSV format. Since Tabula is
licensed under the MIT license, it is open source and free of charge [3]. In the
middle of 2013, Aristarán et al. [4] began working on the Tabula repository
on GitHub. They updated and developed the repository for several years
with the help of their users and sponsors who could help them with bug
reports, feature ideas, and financial support. The repository has not been
updated since 2020, but there are now other GitHub repositories that use
Tabula as a base, for example to embed it in a C# project [10].

2.9 Related Work

Several papers have been found that have the goal of improving the quality
of SRSs and thus also improving the result of the final product of an SRS.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Since this is also part of the goal of this thesis, these papers can be considered
related work.

Osborne and MacNish [43] presented a method to enhance the clarity
of SRSs by using controlled natural language in conjunction with Natural
Language Processing (NLP) techniques in 1996. Their goal was to resolve
ambiguities in SRS by limiting the language scope and extending the
capabilities of a toolkit with features such as parse selection and error
diagnosis. Their case study demonstrates how their system can refine SRS
assertions, detect ambiguities, and generate logical forms to improve the
alignment with customer needs and reduce system errors.

Since 1996, other authors such as Umber and Bajwa [52], Kuchta and
Padhiyar [34], or Fatwanto [22] have also worked on decreasing ambiguities
of natural language in SRSs with different approaches. Umber and
Bajwa [52] proposed a method to transform an English SRS into a controlled
representation using the Semantic of Business Vocabulary and Rules (SBVR)
standard. Kuchta and Padhiyar [34] developed an experimental application
to extract disambiguating SRS concepts by calculating distances between
meanings derived from the WordNet ontology. Fatwanto [22] proposed a
method to reduce the ambiguity and incompleteness of natural language
SRSs by transforming them into object-oriented ones.

Ali et al. [2] developed a methodology to enhance the quality of
SRSs, addressing the unsatisfactory success rate of software products
due to SRS deficiencies. Their approach described steps to ensure the
completeness and correctness of requirements, including parsing for domain
comprehensiveness, stakeholder perspective mapping, validation, and an
external review. The result of this process is the Total Quality Score for
the tested SRS. The use of the authors’ method in projects resulted in a
better score than the score with external review only.

All these papers work on the same goal: to achieve high software quality
based on an SRS. Most of the papers found include the ambiguities that
come with the usage of natural written language. This thesis also focuses to
a certain extent on ambiguities in the Use Case tables of an SRS, but more
specifically on noting missing explanations that the future user group needs
in order to understand and use the software to be developed.

Chapter 3

Requirements Elicitation

This chapter deals with the requirements elicitation process and the stake-
holders of the ‘Use Case Tool’. Functional and non-functional requirements
are determined and a guideline for the development of the tool is created.
Since the application is being developed for the Software Engineering Group
of the Leibniz University, the following requirements are elicited from the
supervisor of this thesis.

3.1 Stakeholders

Stakeholders can be divided into primary and secondary stakeholders [39].
Primary stakeholders have a direct impact on the outcome of the product,
for example, they have ordered the product and have an overview of the
finances. They can be private sector companies, local or national government
agencies, as well as influential figures like politicians and officials who may
not be directly affected but have the ability to influence outcomes. Secondary
stakeholders do not have direct influence, but they have an interest in the
outcome of a product. They may be customers who will use the product, or
employees who fear losing their jobs because of the product [39].

For the ‘Use Case Tool’, a primary stakeholder is the Software En-
gineering Group of Leibniz University, as they initiated the development
of the tool. In addition, the developer has significant influence over the
outcome of the tool and is therefore another primary stakeholder. Other
primary stakeholders are the Leibniz University, the state Lower Saxony
and Germany, as they indirectly influence the research of the Software
Engineering Group through funding [21].

The users for whom the ‘Use Case Tool’ was developed are considered
secondary stakeholders. These are mainly study participants with knowledge
about explainability needs who extend Use Case tables from an SRS.
Secondary stakeholders are also those involved in the usability testing of
the tool. Since secondary stakeholders are considered to be German, the

13

14 CHAPTER 3. REQUIREMENTS ELICITATION

language used within the tool is German. In the following, the Software
Engineering Group, a primary stakeholder, and all secondary stakeholders
are referred to as users because they will be using the tool for development,
testing, studies, and research.

3.2 Functional Requirements

All necessary functions and features of the ‘Use Case Tool’ are collected and
prioritized. The first requirement has the highest priority and the last the
lowest.

R01 The tool should be able to import Use Case tables following the
Cockburn template [17] from an SRS according to the template of
the Software Engineering Group in copyable PDF format.

R02 All Use Case table titles should be clearly displayed in the UI and be
clickable in order to access the corresponding Use Case table.

R03 Each individual step of the main scenario and extensions should be
able to be enriched with explainability needs in the tool’s UI.

R04 The explainability needs added to the main scenario and extensions
steps are added to the Use Case tables in a new line called “Erklärungs-
bedarf” and the corresponding step number when the Use Case tables
are exported.

R05 The tool should be able to export extended Use Case tables as PDF
and CSV files.

The most important functional requirement of the ‘Use Case Tool’ is the
ability to import the Use Case tables from an SRS that is in a copyable PDF
format (R01). The SRS template is defined by the Engineering Group and
the Use Case tables included are based on the template by Cockburn [17].
The next important functional requirement is that all Use Case tables should
be clearly displayed in the UI (R02). This is necessary to navigate through
all the contents of the tables. The main scenario and extensions steps of
each Use Case should be able to be enriched with explainability needs in
the UI (R03). This is the main purpose of the tool to be developed, but it
is not the highest priority in the functional requirements, because the first
requirements have to be developed before this can be implemented. The next
functional requirement is that the explainability needs added in the UI can
be added to Use Case tables as an additional row called “Erklärungsbedarf”
(explainability needs) when exported (R04). It is important that the new
row should contain the step that was extended in the main scenario or in the
extensions. The least important functional requirement is the export of the

3.3. NON-FUNCTIONAL REQUIREMENTS 15

extended Use Case tables as PDF and CSV files (R05). It should be noted
that the importance of the functional requirements was also prioritized after
the implementation process.

3.3 Non-functional Requirements

This section contains the NFRs, which are some constraints to the ‘Use Case
Tool’. They are also prioritized from highest to lowest priority.

NR01 The tool should be easy to install on a system running Windows 11.

NR02 The tool should be usable on a screen of at least 16 inches in size.

NR03 The UI should be in German.

Most importantly, since Windows 11 is the default operating system of
the Software Engineering Group’s computers, the ‘Use Case Tool’ should be
easy to install and run on a system running Windows 11 (NR01). The next
important NFR is that the tool should be usable on a screen of at least 16
inches in size, so that there is enough space to display the contents of the Use
Case tables in an appropriate font size (NR02), and that no UI elements are
truncated. Since the tool is intended for German developers and users, the
UI should be in German (NR03). This is the least important requirement,
since the tool itself will not contain much text, so it can be changed quickly.

3.4 Workflow

Once the requirements were established, the workflow of the ‘Use Case Tool’
was defined to ensure that all the necessary functionality was considered.
The workflow is shown as an activity diagram in Figure 3.1. There are two
partitions for the actors which are the user and the tool itself. The black
dot represents the starting point of the activity after opening the ‘Use Case
Tool’. First, the user can import an SRS that is in a copyable PDF format.
Then, the tool parses the Use Case tables from the SRS and splits the main
scenario and the extensions into steps. Next, the user can select a Use Case
table from a list of all tables. If the user wants to add explainability needs,
an input field belonging to a step of the main scenario or the extensions can
be used. The user input will be written to the internal data structure of the
tool. Afterwards, the user can select and edit other Use Case tables or decide
to export the extended Use Case tables as PDF or CSV file. If the user wants
to add more explainability needs to another Use Case table, another table
can be selected and the aforementioned steps are repeated. When the user
finishes adding explainability needs and exports the Use Case tables, the
tool adds a row called “Erklärungsbedarf” to the extended Use Case tables

16 CHAPTER 3. REQUIREMENTS ELICITATION

and exports all tables. This completes the activity, which is indicated by the
black dot surrounded by another circle.

Use Case Tool

User Tool

import SRS

select
Use Case Table

add / edit
Explainability Needs

save Explainability Needs
to internal Data Structure

split Main Scenario and
Extensions into Steps

parse
Use Case Tables

export
PDF / CSV

[select another Use Case Table]

[Editing completed]

[Editing completed] [click in Input Field]

add Explainability Needs
Row to extended Tables

Figure 3.1: Activity diagram of the ‘Use Case Tool’

3.5 MockUp

Based on the functional and non-functional requirements gathered from the
thesis supervisor, the mockup shown in Figure 3.2 was created. It includes
an import button to parse the Use Case tables of an SRS (R01) and an
export button to export the Use Case tables with explainability needs (R04,
R05). On the left are buttons to select the different Use Case tables (R02)
and on the right are input fields for the user to add explainability needs to
each main scenario and extensions step (R03). The language of the mockup
is German to satisfy constraint NR03.

3.5. MOCKUP 17

XX

U
C
1:

Ei
nl
og

ge
n

U
C
2:

Ti
te
l2

U
C
3:

Ti
te
l3

U
C
4:

Ti
te
l4

U
C
5:

Ti
te
l5

U
C
6:

Ti
te
l6

U
C
7:

Ti
te
l7

U
C
8:

Ti
te
l8

U
C
9:

Ti
te
l9

U
C
10

:T
ite

l1
0

U
C
11
:T

ite
l1
1

U
C
12

:T
ite

l1
2

U
C
13

:T
ite

l1
3

U
C
14

:T
ite

l1
4

U
C
15

:T
ite

l1
5

U
C
16

:T
ite

l1
6

...

M
in
de

st
ga

ra
nt
ie

D
er

S
ys
te
m
be

di
en

er
w
ird

an
ge

m
el
de

t.
W
en

n
ei
ne

fa
ls
ch

e
E
-M

ai
lo

de
r
ei
n
fa
ls
ch

es
P
as

sw
or
te

in
ge

ge
be

n
w
ird

,w
ird

di
e
A
nm

el
du

ng
ab

ge
le
hn

t.

Er
fo
lg
sf
al
l

W
ird

ei
n
S
ys
te
m
be

di
en

er
m
it
A
dm

in
-o

de
rU

se
r-
R
ec

ht
en

an
ge

m
el
de

t,
w
ird

er
zu

re
nt
sp

re
ch

en
de

n
S
ta
rts

ei
te

w
ei
te
rg
e-

le
ite

t.

St
ak

eh
ol
de

r
B
er
ei
ch

sv
er
an

tw
or
tli
ch

e
un

d
Le

itu
ng

,S
tu
de

nt
is
ch

e
H
ilf
sk
rä
fte

H
au

pt
ak

te
ur

S
ys
te
m
be

di
en

er
m
it
U
se

r-
od

er
A
dm

in
-R

ec
ht
en

A
us

lö
se

r
S
ys
te
m
be

di
en

er
gi
bt

di
e
U
R
L-
A
dr
es

se
di
es

er
A
nw

en
du

ng
im

B
ro
w
se

re
in
.

H
au

pt
sz
en

ar
io

1.
S
ys
te
m
be

di
en

er
gi
bt

di
e

U
R
L-
A
dr
es

se
di
es

er
A
nw

en
-

du
ng

im
B
ro
w
se

re
in
.

2.
D
as

S
ys
te
m

ze
ig
td

ie
Lo

g-
in

S
ei
te
.

3.
D
er

S
ys
te
m
be

di
en

er
gi
bt

se
in
e
E
-M

ai
lu

nd
se

in
P
as

sw
or
t

ei
n.

4.
D
er

S
ys
te
m
be

di
en

er
dr
üc

kt
de

n
E
in
lo
gg

en
-B
ut
to
n.

5.
D
as

S
ys
te
m

lo
gg

td
en

S
ys
te
m
be

di
en

er
ei
n.

Er
w
ei
te
ru
ng

en

3a
:W

E
N
N

di
e
E
-M

ai
ln

ic
ht

in
de

rD
at
en

ba
nk

ge
fu
nd

en
od

er
di
e
E
-M

ai
lf
al
sc
h
ei
ng

eg
eb

en
w
ur
de

,D
A
N
N
ze

ig
e
ei
ne

n
Fe

h-
le
r,
da

ss
di
e
E
-M

ai
ln

ic
ht

er
ka

nn
tw

ur
de

.A
ns

ch
lie

ße
nd

ka
nn

m
an

si
ch

er
ne

ut
ei
nl
og

ge
n.

3b
:
W
E
N
N

da
s
P
as

sw
or
t
fa
ls
ch

ei
ng

eg
eb

en
w
ur
de

,
D
A
N
N

ze
ig
e

ei
ne

n
Fe

hl
er
,
da

ss
da

s
P
as

sw
or
t
fa
ls
ch

is
t.

D
an

ac
h

ka
nn

m
an

si
ch

er
ne

ut
ei
nl
og

ge
n.

4.
a:

W
E
N
N

de
rA

nw
en

de
re

in
A
dm

in
is
t,
D
A
N
N

w
ird

er
zu

m
A
dm

in
-B
er
ei
ch

w
ei
te
rg
el
ei
te
t.

4.
b:

W
E
N
N

de
r
A
nw

en
de

r
ei
ne

st
ud

en
tis
ch

e
H
ilf
sk
ra
ft

is
t,

D
A
N
N
w
ird

er
zu

m
U
se

r-
B
er
ei
ch

w
ei
te
rg
el
ei
te
t.

Pr
io
rit
ät

un
ve

rz
ic
ht
ba

r
Ve

rw
en

du
ng

sh
äu

-
fig

ke
it

re
ge

lm
äß

ig

Er
lä
ut
er
un

ge
n
un

d
D
et
ai
ls
:

3a 3b 4a 4b1 2 3 4 5

Ex
po

rt
...

Im
po

rt
...

U
C
1:

Ei
nl
og

ge
n

Sp
ez
ifi
ka

tio
n
A
rb
ei
ts
ze
ite

rf
as

su
ng

Sp
ez
ifi
ka

tio
n
A
rb
ei
ts
ze
ite

rf
as

su
ng

Figure 3.2: UI Mockup of the ‘Use Case Tool’

18 CHAPTER 3. REQUIREMENTS ELICITATION

3.6 Explainability Requirements

Throughout its development, the ‘Use Case Tool’ has been constantly
reviewed and refined. During this process, the following explainability
requirements have been raised. These are also prioritized from highest to
lowest importance.

ER01 After starting the tool, a brief description of its features should be
displayed.

ER02 An explanation of explainability needs should be included above the
input fields.

ER03 The list of Use Case table titles should contain an icon when an input
field of a Use Case table has been edited.

In order to inform users about the possibilities of the ‘Use Case Tool’, a
brief description of its features should be displayed after starting it (ER01).
This is the most important explainability requirement. The next important
one is that an explanation of explainability needs should be included above
the user input fields (ER02). This should be done to clarify what users
are supposed to enter. The final explainability requirement is an icon that
should appear in each table in the list of Use Case table titles when an input
field has already been edited to give the user an overview on his or her edited
Use Case tables (ER03).

Chapter 4

Implementation

This chapter covers the prerequisites, as well as the development process of
the ‘Use Case Tool’ and the difficulties along the way. While the prerequisites
include the choice of frameworks and libraries, the development process
includes the main features and add-ons of the tool.

4.1 Prerequisites

At the beginning of the implementation, the question was which program-
ming language to use and which frameworks and libraries would help to meet
the requirements. The ‘Use Case Tool’ was to be developed preferably on
macOS, and one of the requirements was that it should run on Windows
11. To ensure that the UI would look the same on both macOS and
Windows during the development process, UI frameworks were researched
and tested. The first framework considered was Uno platform [53], which
supports all current operating systems and is open source. Once installed,
all attempts to run a sample project failed due to various NuGet errors.
NuGet manages libraries developed by others that can be used in .NET
developments [40]. Afterwards, Avalonia (Section 2.6) was discovered and
tested. The setup was flawless on both, macOS and Windows 11 and official
sample projects provided looked identical on both platforms, making it a
promising candidate. Since Avalonia is free for commercial use, platform
independent, and therefore cost-effective and easy to update over the long
term, it was the obvious choice. As Avalonia applications are written in
a .NET language [6], the chosen programming language for the ‘Use Case
Tool’ is C#. In addition, the MVVM pattern (Section 2.7) is used to keep
development and maintainability more flexible.

The main purpose of the tool is to parse Use Case tables from an SRS
in copyable PDF format and display them in the UI. To accomplish this, a
library was needed to parse the table contents. This was necessary because
each cell had to be read and then written to an internal data structure,

19

20 CHAPTER 4. IMPLEMENTATION

which was not easily done with a text parsing library alone. During the
research, Tabula (Section 2.8) stood out, especially for parsing table contents
of copyable PDF files.

The MigraDocCore [47] library is used to enable the PDF export. It
can generate documents by adding for example paragraphs and tables to
sections. If tables do not fit on one page, they are automatically split into
two pages based on the defined margins. Since it is open source under the
MIT license just like Tabula, it is free to use and commercially usable.

4.2 Development Process

This section describes the development process of the ‘Use Case Tool’.
During the development, errors and difficulties were handled in an agile
manner at all times.

4.2.1 User Interface

The first view a user sees when opening the ‘Use Case Tool’ is the ImportView
shown in Figure 4.1. It contains a brief description of the available features
and a button to import an SRS or a PDF previously exported with the
tool. The button action is bound to the OpenFilePicker method (see
Section 4.2.2).

Figure 4.1: ImportView of the ‘Use Case Tool’

After importing, the UseCaseView shown in Figure 4.2 is displayed full
screen. It consists of two rows in a Grid. One for the top bar with the
import, Use Case diagram, and export buttons, and the second with the
Use Case tables. The second row is itself a Grid with three columns. On
the left, the first column displays a ListBox containing a dynamic number
of Use Case table titles of an imported file, as the number varies for each
SRS. To provide visual feedback to the user when selecting a Use Case table,
the Border is implemented in two styles: one for unselected items and one

4.2. DEVELOPMENT PROCESS 21

for a selected item. This is controlled by the IsVisible property, which is
bound to the IsSelected property of a ListBoxItem. The second column is
for a GridSplitter, which allows to change the width of the ListBoxItems
by the user. This can be useful if a title of the tables is very long, since
the ListBox is oriented to the length of the title. The third column on the
right displays the contents of a selected Use Case table in a DataGrid. This
contains two DataGridTextColumns: one for the first column of a Use Case
table and one for the second column and user input. The second column
is implemented as a Grid with three columns. The first of these three
columns is for the contents of the second column of the Use Case table.
This column is bound to an internal data structure: either one string as
Content and an empty ContentList or, in the case of the main scenario or
extensions, an empty Content and multiple strings (steps) as ContentList.
If the ContentList is empty, meaning that the current row is neither a
main scenario nor extensions, the first column is stretched across all three
columns. To achieve this, a Converter is used that adapts the emptiness
of ContentList, or the inverse of it, to a Boolean value so that it can be
bound to the IsVisible property of the controls. If the current row is a
main scenario or extensions, the first of the three columns contains all steps
in a ListBox. The second of the three columns is a GridSplitter, so that
the width of the second and third column can be changed by dragging the
bar between them. The third of the three columns is again a ListBox to
display all the numbers from the main scenario or the extensions, followed
by a TextBox to allow user input in the UI.

Figure 4.2: UseCaseView of the ‘Use Case Tool’

22 CHAPTER 4. IMPLEMENTATION

4.2.2 Import

First, an OpenFilePicker method is implemented. To be able to import
files with umlauts or spaces, the path parameter is decoded right away at the
beginning of the function. an SRS in copyable PDF format can be imported,
as well as Use Case tables previously exported with the tool as PDF. An
iteration through all pages is implemented using Tabula. Tabula for C# has
two different modes: the stream mode with the BasicExtractionAlgorithm
and the lattice mode with the SpreadsheetExtractionAlgorithm [10].
The lattice mode is chosen because it parses each cell of the Use Case
tables separately, making it easier to transfer the contents to the internal
representation of the data structure. Then, an iteration through all the
tables on a page found by Tabula is implemented with the constraint of two
columns. This helps to skip all tables that cannot come into consideration
for the Use Case table template that the Software Engineering Group is
using. If a table with two columns is found, all contents are checked for
parsing. To provide a basis for the following parsing steps, the different
new line representations of the operating systems of a string in each cell
are replaced by a uniform “\n”. The first check for a Use Case table is
that the table starts with the string “Use Case”. Then, a new UseCase
instance is created and the title is added. The first and second columns
of a table are parsed together after checking the contents of the first
column, which is described in the following. The content of the second
column in each row can be added as a string to Content of the UseCase
instance if the first column does not start with “Hauptszenario” (main
scenario), “Erweiterung” (extension), or “Erklärungsbedarf”. If it does start
with “Hauptszenario” or “Erweiterung”, the content has to be added as a
dynamic list to the ContentList of the UseCase instance because there are
different numbers of steps. Regular expressions are used to separate the
steps. The regular expression “\n\d+[.:]?[a-z]?(?:[.:]\d+\s*)*” is used to
separate multiple steps by a newline and a subsequent number, which can
be followed by a period or colon, and a letter, which can also be followed by a
period or colon. For example, “\n2.”, “\n2a:” “\n2.a”, “\n2:a:” are recognized
patterns to split steps. The extraction of the first step is done with the
same regular expression, but without the leading “\n”. A SplitEnumeration
method is implemented to split the number (Number), the text behind the
number(Content), and an input field (InputText) of each step, which are
stored as a NumberContentInput property. If the content of the first column
of a table starts with “Erklärungsbedarf”, this means that Use Case tables
have already been edited and exported with the tool. This content is
therefore reimported and allows users to edit previous input in the UI. To
be able to edit the previous written explainability needs, each need from
the ContentList according to main scenario and extensions has to be split
and added to the NumberContentInput property. To achieve this, different

4.2. DEVELOPMENT PROCESS 23

regular expressions have to be used additionally with the SplitEnumeration
method. The regular expressions are the same as above, but with a
trailing “H:” for the main scenario and a trailing “E:” for the extensions
(see Section 4.2.3). The steps of the “Erklärungsbedarf” ContentList
have to be written into the correct InputText of the NumberContentInput
property of main scenario or extensions. Two loops are implemented
to iterate through the main scenario or extensions ContentList and
“Erklärungsbedarf” ContentList to find the matching Number of the main
scenario or extensions and the InputText from the “Erklärungsbedarf”
ContentList. After all Use Case tables have been parsed, the contents
can be displayed in the UseCaseView. A Transitioning Content Control [9]
is chosen to be able to switch between different contents in a window. This
helps to switch from the ImportView with the first import option to the
UseCaseView and could be easily extended by more views in the future.

4.2.3 Export

An ExportButton_Clicked method is implemented in the UseCaseView.
Since PDF and CSV files have to be exported, two different ways had to
be implemented. The PDF export uses MigraDocCore to create a new
document and add a section and a paragraph. An iteration through all
parsed and cached Use Case tables is implemented, adding a new table
and the first row with the Use Case table title in two columns. This is
followed by an iteration through all rows of a cached Use Case table. The
content of the first column of the cached table is then added to the first
column of the new row. If the first column contains the main scenario or the
extensions, each Content of its ContentList is added to the allContents
string, which is then added to the second column of the new row. In addition,
each InputText of its ContentList that contains the explainability needs, is
added to the allInputsMainScenario or allInputsExtension string with
its Number. If it is not the main scenario or the extensions the second
column can be added immediately to the second column of the new row,
since it contains only a string. A Boolean is implemented to ensure that
the explainability needs added in the UI are inserted in the right row. If
the Boolean is true, they are added to the next row, which means below the
main scenario row if no extensions are available, or below the extensions. In
addition, an “H:” for ‘Hauptszenario’ is added to all numbers of InputText
that belong to the main scenario, and an “E” for ‘Erweiterungen’ is added if
they belong to the extensions. After iterating through all Use Case tables,
a new instance of the PdfDocumentRenderer is created and the document is
added and rendered into a PDF file. For the CSV export, a new object of the
StringBuilder is instantiated. An iteration through all Use Case tables is
implemented, which joins all columns in a row with a semicolon. A semicolon
is used because commas are often used in written language, which can cause

24 CHAPTER 4. IMPLEMENTATION

problems in the exported file. As with the PDF export, a Boolean is used to
insert the explainability needs row in the right place, and the ContentList of
main scenario and extensions is iterated through to assemble various strings
with its Number and InputText. Each row of a Use Case table is appended
separately to create the same number of rows as with the PDF export. The
steps of the main scenario, extensions and explainability needs rows are
concatenated with a semicolon so that each step has its own column cell.
Finally, the StringBuilder instance is appended to a CSV file.

4.2.4 Add-Ons

This section presents all the add-ons that have been implemented in addition
to the main features.

Explainability Needs Hint

During the implementation, it was discovered that interaction explanations
for the input fields were missing. To achieve that users would know what
to write in them, the outstanding text “Erklärungsbedarf” is written above
the input fields which is supported by a hint “?” that has a hover effect with
further explanation (see Figure 4.3). In addition, a placeholder was added
to the input fields.

Figure 4.3: Hint for Explainability needs for the input fields of the
‘Use Case Tool’

Use Case Diagram

The UseCaseDiagramWindow can be opened as a separate window using the
button on the top of the UseCaseView. To access the diagram, all images
are parsed in the OpenFilePicker method. They are cached in a list of
IPdfImage, which is an interface of the PdfPig library [51] that is installed
with Tabula. To be able to display an image in the UI, each image in the list
is converted to a Bitmap, which is stored in a tuple with the page number it

4.2. DEVELOPMENT PROCESS 25

was found on. This list is passed to the UseCaseDiagramViewModel, which
selects the image that is on the same page as the first Use Case table or on
the previous page. If no image is found on these pages, or if the image is not
in PNG or JPEG format, the window displays a note with this information.

Pencil Icon

Because users may want to review their previously added explainability
needs in the UI before exporting, the pencil icon in the list of Use Case
tables clearly indicates which Use Cases already have been supplemented
with explainability needs. When something is written into an InputText, a
Boolean is getting notified that is bound to each ListBoxItem on the left
in the UseCaseView. The icon was self-designed, has a hover effect with an
explanation, and is displayed on the left of a Use Case table button in the
list, as shown in Figure 4.4.

Figure 4.4: The Pencil Icon in the list of Use Case table titles indicates
that a table has been edited

Message Boxes

Message boxes are implemented to prevent accidental closing and to provide
feedback that the export was successful. The MessageBox.Avalonia [5]
library is used, which allows the definition of custom buttons. The message
boxes are used as a warning when the user clicks the import button in the
UseCaseView or wants to close the whole tool (see Figure 4.5). After a file
has been exported, a message box is used to indicate that the file has been
successfully saved and to display the name and absolute path (see Figure 4.6).

Figure 4.5: Message box that warns the user when clicking the import or
close button

26 CHAPTER 4. IMPLEMENTATION

Figure 4.6: Message box indicating successful export

4.3 Difficulties

During the implementation of the import, many difficulties were encountered
in parsing the Use Case tables as a whole. The first one was that the stream
mode of Tabula was used where each cell was not parsed separately and
the texts were mixed. This was solved by using the lattice mode. Another
problem was that many tables were split on two pages somewhere between
their rows or, in the worst case, between the steps of the main scenario or the
extensions. This was first solved with a helper string and the prerequisite
that the entire first Use Case table had to be written on one page. The last
row string of the first column was written into the helper string, so that
the following tables could be checked whether they were split or not. Since
this was a big limitation, it was later changed to a helper Boolean that is
true if a table with “Use Case” is found. This way a new UseCase object
is instantiated only if the Boolean is false, and it is clear when the rest of
a table is on another page and can be added to the last parsed table. In
some sample SRSs, Tabula recognized the same Use Case table or some of
its rows multiple times, or merged two different Use Case tables when they
were on the same page. To avoid adding a second table, another helper
Boolean is used to check if a Use Case table was found and the first row
contains the string “Use Case” a second time. If the Boolean is true, all
subsequent content is not parsed. A method CheckForDuplicatedContent
is implemented to check if a row is already contained in the current Use
Case table and if so, the row is skipped. Tabula can sometimes recognize the
content of a split cell on the next page, and if it does, the text can be added
to the previous row. Here it was important to distinguish between Content
and ContentList. A parsed string can easily be added to the Content, while
in a ContentList, its last step must be found and the parsed string must
be split into NumberContentInput to add it as a step. SRSs are written by
different people, which leads to the fact that the enumeration steps of the
extensions are written differently. The problem is to define a generic but
useful regular expression that, in the best case, recognizes all of them. In
order to be able to reimport and further edit the InputText, the import and
export to a PDF file had to be carefully implemented, which took a lot of
testing time and readjustment.

Chapter 5

Study Design

After implementing the ‘Use Case Tool’, a user study was conducted. The
aim was to test the usability of the tool as it is supposed to be used in future
studies by the Software Engineering Group. This means that other people
outside the institute will have to use the tool. Therefore, it should be easy to
use and self-explanatory. The following chapter describes how the usability
test was designed, conducted and executed. This also includes the selection
of participants.

5.1 Participants

The participants selected for the usability test had to have a certain level of
prior knowledge. This means that they must already have experience with
the German SRS template defined by the Software Engineering Group of
Leibniz University, in particular with the Use Case tables. The Use Case
tables in this SRS template are based on the template by Cockburn [17].
There was no need for the attendees to have prior knowledge about
explainability.

A total of nine participants took part in the usability test. Convenience
sampling from personal and student networks was used to recruit the
attendees. Accordingly, the participants are students of computer science
at Leibniz University who are at the end of their Bachelor’s degree or have
already completed it. At this point, the participants should have acquired
all the necessary skills to navigate and operate the system, and are therefore
qualified to participate in a generalizable usability test [50].

5.2 Procedure

The setup for the study was a quiet room with tables, chairs and an external
monitor that could be connected to a 14-inch laptop. Due to the NFR
NR01 described in Section 3.3, the study is conducted on a laptop running

27

28 CHAPTER 5. STUDY DESIGN

a Windows 11 operating system with the latest version of the ‘Use Case
Tool’ installed. An external monitor was chosen because NR02 (Section 3.3)
defines that the tool should be usable on a screen of at least 16 inches in
size. In addition, a computer mouse was connected to the laptop so that users
would not be negatively affected by using the laptop’s possibly unfamiliar
trackpad.

The participants were invited to a room at the Software Engineering
Group of the Leibniz University in early February 2024. A maximum time
slot of 45 minutes was allocated for each attendee. At the beginning,
each participant received a brief introduction to what the ‘Use Case Tool’
was developed for. This includes that the explainability needs should be
identified as early as possible in the software development process and
should be addressed after the SRS has been written. It was also mentioned
that the usability test they are participating in does not aim to generate
research results regarding explainability needs, but to test the usability and
functionality of the tool. After the introduction, the participants tested the
tool. Data was collected during and after the usability tests. The data
collection process can be seen as a flowchart in Figure 5.1.

9 Participants

Qualitative
DataComments

and
Observations

Usability Testing
with ?Use Case Tool?

Quantitative Data

SUS

Qualitative Results Quantitative Results

Improvement of ?Use Case Tool?
and Future Work

during testing

after testing

Figure 5.1: Data collection process of usability testing

5.3. DATA COLLECTION 29

5.3 Data Collection

Data was collected both quantitatively and qualitatively following the
approach of Pruitt and Adlin [44]. Typically, quantitative data is collected
through questionnaires or surveys, while qualitative data is collected through
interviews or workshops. In addition, a large number of people tend to be
surveyed quantitatively, while a smaller number of people tend to be surveyed
qualitatively. The collection of all data was completely anonymous.

Qualitative data was collected while the participants tested the usability
of the tool. Each participant was asked to verbalize their thoughts during the
use of the tool according to the think aloud method. In this way, positive
and negative aspects could be noted and used to improve the tool in the
future [33]. In addition, the attendees were observed during use to capture
spontaneous, uncommented reactions. If the participants felt that they had
tested everything, but certain main features had not yet been tested, they
were made aware of this.

Quantitative data was collected after the ‘Use Case Tool’ was tested. The
participants were asked to fill out a questionnaire according to Brooke’s SUS
assessment [12]. The original SUS statements shown in Table 2.3 have been
adapted, but only slightly modified (cf. Table 5.1), to refer to the developed
tool. As the participants are German, the questionnaire was translated
into German. A 5-point Likert scale ranging from 1 - ‘Strongly Disagree’
to 5 - ‘Strongly Agree’, shown in Figure 2.2, was used to determine each
participant’s level of agreement. An overview of the SUS questionnaire and
the Likert scale used in the study can be found in Appendix B.

5.4 Data Analysis

After usability testing was finished, the collected data was analyzed. The
quantitative data from the 5-point Likert scale SUS was used to calculate
the SUS score for each participant. The calculation of the score is described
at the end of Section 2.4. The qualitative data, the notes collected during
usability testing, were sorted, viewed and evaluated alone.

30 CHAPTER 5. STUDY DESIGN

Number Statement

1 I can well imagine using the tool regularly in a work context.
2 I think the tool is unnecessarily complex.
3 I find the tool easy to use.
4 I think I would need technical support to use the tool.
5 I find that the various functions of the tool are well integrated.
6 I think there are too many inconsistencies in the tool.
7 I can imagine that most people who work with software projects

and specifications will quickly become familiar with how to use the
tool.

8 I find the tool very cumbersome to use.
9 I felt very confident using the tool.
10 I had to learn a lot of things before I could work with the tool.

Table 5.1: Modified usability test statements for the ‘Use Case Tool’

Chapter 6

Results

This chapter describes the results of the usability testing of the ‘Use Case
Tool’. It is divided into quantitative and qualitative data to be evaluated.

6.1 Quantitative Results

The data collected with the statements in Table 5.1 according to the SUS is
shown in Figure 6.1 as a diverging stacked bar chart. This figure also shows
that the statements of a SUS are alternately positive and negative. The odd-
numbered statements are most often rated as ‘Agree’ and ‘Strongly Agree’,
and the even-numbered statements are most often rated as ‘Disagree’ and
‘Strongly Disagree’.

2

1

1

2

4

4

3

3

7

5

4

6

6

5

2

5

1

2

3

2

7

3

7

5

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

1

2

3

4

5

6

7

8

9

10

Q
ue

st
io
n

Sentiment Analysis

Strongly Disagree Disagree Undecided Agree Strongly Agree

Figure 6.1: Usability test answers of all participants

All nine participants found the ‘Use Case Tool’ easy to use (statement 3)
and could imagine that stakeholders would quickly become familiar with its
use (statement 7). Seven out of nine attendees (77.8%) could imagine using

31

32 CHAPTER 6. RESULTS

the tool regularly in a work context (statement 1).
No one found the ‘Use Case Tool’ to be unnecessarily complex (state-

ment 2) or cumbersome (statement 8). This is also reflected in the statements
4 and 10, where no one thought that technical support would be necessary
to use the ‘Use Case Tool’ (statement 4) or that they had to learn a lot to
be able to work with the tool (statement 10).

Eight participants (88.9%) felt that the ‘Use Case Tool’s’ features were
well integrated (statement 5) and that the tool had no inconsistencies
(statement 6). One respondent (11.1%) felt that there were inconsistencies
in the Use Case Tool (statement 6). Eight out of nine attendees (88.9%) felt
very confident using the ‘Use Case Tool’ (statement 9). Figure 6.2 shows the
calculated SUS score for each participant.

82,5%

95,0%
87,5%

97,5% 95,0%

70,0%

97,5%
87,5%

77,5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9

System Usabaility Scale - Score

SUS-Score Average SUS-Score Good Threshold Excellent Threshold

Figure 6.2: SUS score for each participant and the average

The thresholds drawn in Figure 6.2 were taken from Bangor et al. [1],
shown in Figure 2.2. Eight scores are above the threshold for good usability
(72.8%), one is slightly below good usability, and six are above the threshold
for excellent usability (85.6%). The average SUS score is 87.8%, which is
above the threshold for excellent usability.

6.2 Qualitative Results

Table 6.1 shows pattern codes [45] for the comments made by the participants
and observations made by the experimenter during the usability tests in the
second row. The first row shows the number of participants who mentioned
the text in the second row, reacted to a feature or forgot to test a feature.

Three participants (33.3%) tried using the tabulator key to move to the
next input field. After this did not work, they commented that this would

6.2. QUALITATIVE RESULTS 33

People Comments and Observations

9 Irritated by export message box
9 Had to think about “H” and “E” in exported Use Case tables
9 Did not try export as CSV file by themselves
9 Tried CSV import after export was possible
8 Wanted to zoom in on Use Case diagram
5 Needed hint for reimport
4 Would write out “H” and “E” and place them elsewhere
3 Wanted to use tabulator key for input fields
3 Searched a save button
2 “Spezifikation öffnen...” misleading
2 “Spezifikation öffnen...” message box irritating if nothing changed
2 Clicked on hint ‘?’
2 Found diagram display error
2 Said that Pencil Icon is helpful
1 Confused why diagram was not exported
1 ‘Erläuterungen und Details’ was not shown in the UI
1 Export message box can not be closed with ESC
1 Confused about missing hint that CSV file cannot be reimported
1 UseCaseDiagramWindow in foreground is good
1 minWidth and minHeight not set on UseCaseView window
1 Diagram vanishes after “Spezifikation öffnen...”, “Ja, verwerfen” and

“Abbrechen” clicked
1 Text after a written ‘;’ is in a new cell in exported CSV file

Table 6.1: Comments and observations from usability testing

be more convenient than working with the mouse.
All participants (100%) were visibly irritated by the message box

containing a long path name that appears after clicking the save button
in the export file picker. One participant (11.1%) tried to close this message
box with the escape key and was frustrated that it did not work. Also,
no one (100%) thought of exporting anything other than PDF files, so the
experimenter gave a hint to look for other formats to export. When the
attendees found out that they could export a CSV file, they all (100%) tried
to import it as well. One participant (11.1%) asked why there is no hint that
an exported CSV file cannot be reimported. Another one (11.1%) found out
that text after a ‘;’ in the input text box is written in a new cell in the
exported CSV file.

In the exported Use Case tables, all participants (100%) had to think
about the meaning of the abbreviations “H” and “E” in the new row called
explainability needs. Four attendees (44.4%) mentioned that they would
write them out as “Hauptszenario” and “Erweiterungen” and that there could

34 CHAPTER 6. RESULTS

be a different row for each in the exported tables.
Five participants (55.6%) did not try to reimport an exported PDF file.

They were given a hint by the examiner after they said that they do not
know what else they could try. Two of the attendees (22.2%) said that the
“Spezifikation öffnen...” (‘Open specification...’) button is misleading because
the exported file contains only the Use Case tables and is not an SRS. The
message box that appears when the “Spezifikation öffnen...” button is clicked
was mentioned as confusing when nothing was edited by two participants
(22.2%).

Eight of the participants (88.9%) tried to zoom in on the Use Case
diagram. Two of them (22.2%) found a display error that appeared in
different window sizes when the window was resized. One attendee (11.1%)
was confused that the diagram was not exported to the PDF file. Another
one (11.1%) found out that the diagram disappeared after clicking the
combination of “Spezifikation öffnen...”, “Ja, verwerfen” (‘Yes, discard’) and
“Abbrechen” (‘Cancel’). One participant (11.1%) was particularly positive
about the fact that the UseCaseDiagramWindow stays in the foreground after
opening.

Three attendees (33.3%) looked for a button to save the data during
the test. Two (22.2%) clicked multiple times on the ‘?’ that has a hover
effect and contains a hint. The Pencil-Icon was described as helpful by
two participants (22.2%). One attendee (11.1%) has noticed that the text
“Erläuterungen und Details” (‘Explanations and Details’) under a Use Case
table in the SRS is not available in the UI or in the exported files. It was
mentioned that “Erläuterungen und Details” could solve some explainability
needs, so it would be useful to include it. Another participant (11.1%) tried
to resize the UseCaseView window and found that no minimum height or
width is set, so the window can almost disappear completely.

Chapter 7

Discussion

This chapter discusses the results of usability testing, as well as the
limitations and challenges that should be considered.

7.1 Discussion of Results

The average SUS score of 87.8% achieved during usability testing shows
that the ‘Use Case Tool’ is above the threshold of an excellent SUS score of
85.6%, as defined by Bangor et al. [1]. It also indicates a high level of user
acceptance (cf. Figure 2.2). This leads to the assumption that users should
be able to use the tool easily. When looking at each SUS score individually,
the results vary between users. A reason could be that each user has different
expectations of the tool itself or some of its features. Only one user had a
score of 70%, which is below the good threshold of 72.8%. The expectations
of this user were not sufficiently met, but the acceptance is still in a high
range according to Bangor et al. [1].

The qualitative results provide more insight into why users rated the ‘Use
Case Tool’ as they did and may also reveal their expectations or problems
in using the tool. All nine participants were confused by the message box
that opens after clicking the save button on the export file picker. It should
be noted that the message box contained a very long path name and a
very long suggested name, which was derived from the actual file name.
It was also noticeable that all participants accepted the proposed name.
The purpose of this message box was to give the user feedback that the
file had been saved, and also to display the path where the file was saved
and its name. To minimize the confusion for the participants, the different
texts could be displayed with a little more space between them for a better
overview. Another possibility could be to remove the path and name and
just display a short success message. One attendee tried to close the message
box with the escape key. Since no one else tried this, it could be considered
a minor feature, but it might be convenient not to have to switch back to

35

36 CHAPTER 7. DISCUSSION

the mouse. In addition, three participants tried to use the tabulator key
to switch between the input fields because they also did not want to switch
back to the mouse. This suggests that power users like the convenience of
using only the keyboard.

After exporting the extended Use Case tables, all participants paused
for a moment and had to think about the abbreviations “H” and “E”
after the step number in the new row “Erklärungsbedarf”. Four of the
attendees mentioned that they would prefer no abbreviations and one row
of explainability needs for the main scenario and one for the extensions. It
would be easy to write “Hauptszenario” and “Erweiterungen” instead of the
abbreviations, but this could make the text in the row of explainability needs
very long and confusing. The option with two different rows could also be
implemented. However, this would require much more effort to modify the
current implementation for the reimport.

None of the participants tried to change the format of the exported file.
This suggests that they did not see the need to export to a format other
than PDF, which was the default. The CSV format for export was chosen
because it facilitates analysis when the tool is used to generate explainability
needs studies. Therefore, it can be assumed that the direct users may not
have the purpose to export a CSV file, but that the evaluators can derive a
high benefit from it. One attendee found an error in the CSV export. When
a ‘;’ is written in an input field, the text behind it is written in a new cell in
the exported CSV file as if it belonged to a different step. This error needs
to be fixed by banning the semicolon from the input field or replacing it with
another punctuation mark. While reconstructing the error, it was discovered
that a CSV file that was to be replaced by a new file with the same name
simply added the new export to the old file. So there should be a warning
that the data should not be saved over an existing CSV file.

It was interesting to see that all nine participants thought they could
import a CSV file after being made aware of the CSV file export. They
probably thought that if they missed something on the export file picker,
they might have also missed something on the import file picker. This raises
the question of whether they really wanted the CSV file import or just wanted
to make sure they were not missing anything. One potential issue that came
up was that one attendee was expecting a hint that a CSV file could not be
reimported. This could lead to confusion and misunderstanding if someone
exports a CSV file and tries to reimport it. Since this will not work, the user
will not be able to continue working on these Use Case tables in the ‘Use
Case Tool’. So there should be a note that CSV files cannot be reimported,
or the reimport feature should be implemented.

Less than half of the participants (four out of nine) tried to reimport
PDF files on their own. This was a bit unexpected, especially since the
ImportView includes a message about the option to reimport files. Two
attendees mentioned that the “Spezifikation öffnen...” button is misleading

7.1. DISCUSSION OF RESULTS 37

because the exported Use Case tables are no longer an SRS. This is an
indication that the button text was poorly chosen or not well thought out.
The button text is easily changeable and should be changed to something
more generic like ‘Open...’ or ‘Import...’.

The message box that opens when clicking the “Spezifikation öffnen...”
button irritated two participants because they had not changed anything in
the input fields and wanted to select a different file. This message box is
intended to help users to not lose their progress when adding or editing the
explainability needs of Use Case tables in an SRS. It serves as a warning that
any added input will be lost if the Use Case tables have not been exported
beforehand. During the usability tests the attendees focused on testing the
tool’s features and opened several files in a short time. This will probably
not be the case when the ‘Use Case Tool’ is used for its intended purpose.
So the question is whether making new changes dependent on the message
box is a very important change.

Eight out of nine participants tried to zoom in on the Use Case diagram,
showing that everyone expects to be able to zoom in on an image. However,
since the Use Case diagram was seen as an add-on to the implementation,
this was not the primary focus. Two attendees found a display error when
resizing the UseCaseDiagramWindow. This is probably an error that can
only be fixed with a different image extraction library. Another participant
found an error which can and should be fixed: The diagram disappears
after clicking the combination of “Spezifikation öffnen...”, “Ja, verwerfen”
and “Abbrechen”. One attendee mentioned that it is a good choice to keep
the UseCaseDiagramWindow in the foreground. That way, you can see the
diagram and still write in the input fields. One participant was confused
that the Use Case diagram did not export to the PDF file. This was tried,
but unfortunately did not work, and since it is an add-on, it was not pursued
further due to time constraints.

Three participants were looking for a button to save the contents of their
edited Use Case tables. Since the export works like a ‘save as’, this was not
considered. For the future it might be useful to implement an additional save
button, but the question is whether this is necessary. During the usability
tests, attendees switched between files a lot and did not read each Use Case
table to add explainability needs, which the ‘Use Case Tool’ is designed to
do.

The hover effect hint marked with a ‘?’ above the input fields seems to
be misleading for some people. Two of the participants clicked on it several
times, while others did not. The design of the ‘?’ could be changed. The
question is what to change so that it is not misleading for some people.

One attendee discovered that the UseCaseView window did not have a
minimum width and height set. The implementation contained an error,
so the minimum width and height were not applied correctly. In general,
the window size was intentionally not hard coded, allowing users to resize

38 CHAPTER 7. DISCUSSION

the window to their needs. However, a minimum width and height should
definitely be set so that all buttons and contents are fully visible and usable.
This is also required by NR02 (Section 3.3), which defines a window with a
size of at least 16 inches to avoid truncated UI elements.

In an SRS, there can be text called ‘Erläuterungen und Details’ under
each Use Case table. Currently, this cannot be displayed in the ‘Use Case
Tool’, and one attendee mentioned that parsing this too could avoid some
upcoming explainability needs. This is a future work because these texts are
not a part of the table and Tabula (Section 2.8) cannot parse texts that are
not in tables. So another library has to be found to parse these texts.

Two participants were particularly positive about the pencil icon. This
shows that it can be a good explainability requirement to help find the Use
Cases where something has already been edited.

7.2 Improvements

During usability testing, it was discovered that the minimum width and
height in the UseCaseView window were not set correctly. This has been
adjusted in both the ImportView and the UseCaseView window. The
minimum size is set to a little under 16 inches, without truncating any UI
elements. This is to avoid user restrictions that could cause problems on
smaller laptops and user dissatisfaction. In this context, a minimum width
has also been added for columns separated by a Gridsplitter.

Another problem discovered was that a semicolon in an input field would
cause a new cell in the exported CSV file to start with the text after the
semicolon. Therefore, the semicolon is now replaced with a ‘-’ in the CSV
export. The semicolon remains in the PDF export because it does not cause
any problems. Since all participants were looking for the CSV file import
after knowing about the export, and one participant asked for a note that
the CSV reimport is not possible, the CSV reimport was implemented as
well. While testing the CSV import, another error was found in the export,
where the steps of the main scenario were again written in extensions. This
has been improved by resetting a string.

The last error found was that the Use Case diagram was deleted after
opening the import file picker by clicking “Spezifikation öffnen...”, “Ja,
verwerfen” and “Abbrechen”. This was caught with an if clause that checks
if the file picker was aborted, and some initial variables had to be moved
after the if clause.

The “Spezifikation öffnen...” buttons were renamed to “Importiere...”
(‘Import...’) after the usability tests (see Figures C.1 and C.3). The previous
name was misleading and five participants did not try to reimport the
exported files. ‘Import’ seems to be more appropriate than ‘Open’, because
in the case of an SRS, the whole document is not opened, but only the Use

7.3. LIMITATION AND CHALLENGES 39

Case tables are imported. The text of the ImportView window has also been
changed (see Figure C.1). There is now a fourth step describing that it is
possible to reimport a PDF and CSV file. This should make users more
aware of this option and prevent them from overlooking it as easily as in the
previous text.

The message box with a lot of text that appeared after saving a file was
irritating to all participants. To avoid this, the text has been shortened (see
Figure C.2). The file name is included in the absolute path name, so only
the absolute path name is displayed in the message box. It has also been
decided to no longer use the suggested file name in the export file picker
anymore, because in the case of Microsoft Word, the file name is always
preceded by “Microsoft Word”. This could also have caused confusion and a
long message box text, as most users did not change the suggested file name.
One participant suggested adding the ability to close this message box with
the escape key. Since this already worked for another message box and was
easy to implement, it was added here.

7.3 Limitation and Challenges

Since the study participants were obtained through convenience sampling
from personal and student networks, there are some limitations to the
validity of the results. The attendees may have demand characteristics [42]
in favor of the ‘Use Case Tool’ adopted, which may have influenced their
feedback to avoid being overly critical. Demand characteristics can occur
for example, because participants know what an experiment is for and that
they, consciously or unconsciously, want the result to be a certain way. This
can influence the results of an experiment when working with humans [42].
Attempts were made to prevent demand characteristics. Before and during
the usability test, attendees were told and encouraged to test anything that
came to their mind, and that all notes taken by the experimenter would be
anonymous. In addition, the anonymity of the responses was emphasized
before the questionnaire was administered, and the experimenter did not
look at the screen during the completion of the questionnaire until it was
submitted. All participants were computer science students, which means
that people with other backgrounds may have different problems using the
tool than those already identified.

Another limitation is that the participants of the usability testing are
not the secondary stakeholders for whom the tool was designed. They only
tested the usability of the ‘Use Case Tool’ to find errors and evaluate its
features. This does not correspond to the actual use to extend Use Case
tables with explainability needs. Thus, the feedback given lacks the purpose
of real use, which should be tested in another study with participants who
have knowledge about explainability needs.

40 CHAPTER 7. DISCUSSION

The Use Case tables of an SRS that can be imported into the ‘Use
Case Tool’ require a specific layout. The tables must have two columns
in order to parse the contents. In addition, the tables must contain the
string “Use Case” in the first cell, as this is the marker for a Use Case table
in the implementation. The Use Case tables also have to contain the string
“Hauptszenario” for the main scenario and “Erweiterung” for the extensions.
All of these hard coded strings limit the number of Use Case tables that can
be parsed. The layout of the files that can be reimported is also restricted.

The regular expressions used to divide the steps of the main scenario and
the extensions are generic, but especially the extensions steps need a specific
form to be recognized. This form has to be a number and a period/colon, a
number with a letter that may be followed by a period/colon or a number
with a period/colon and a letter that may be followed by a period/colon. It
is important that there is no space between the number, letter, and period or
colon, otherwise the part after the space will not be recognized as a coherent
step.

The implementation of the export feature has the limitation that it needs
to have a row after the main scenario. This is the case because sometimes
the Use Case tables contain extensions and sometimes they do not. In order
to be able to add the explainability needs in the right row, there is one look
ahead row to check if there are extensions after the main scenario in the
table. If a table does not contain a row after the main scenario, the tool will
crash when exporting.

The Tabula library sometimes has problems with text recognition. This
can be seen in some SRS when sentences have no spaces, even though spaces
are visible in the PDF. Recognition also sometimes fails when a table cell
is split across two pages. To avoid this, another library could be tested.
The text ‘Erläuterungen und Details’, which can be written below Use Case
tables, is also not parsed because it is not written in a table and therefore
cannot be parsed with Tabula. In order to parse this text, another text
recognition library needs to be found.

A CSV file cannot simply be replaced with a new one during export.
When a file is replaced, the new content is written below the content of
the first export. This may cause problems and is a limitation, but it is not
something that can be changed by the tool.

The Use Case diagram is currently determined by the page number it
is on, so the image on the previous page or on the page of the first Use
Case table is selected, which is unsafe. This could be improved by using
a text recognition library to recognize the title “Use Case Diagramm” (use
case diagram) and parse the image below. This is not possible with Tabula
because it only checks for text in tables.

Chapter 8

Conclusion and Future Work

This chapter summarizes the goals of this thesis and the results of the
usability testing of the developed ‘Use Case Tool’. Furthermore, future work
on the tool is discussed.

8.1 Conclusion

Identifying explainability needs early on in the development process of new
software is a challenge, as its absence can lead to inefficiencies and limitations
in the usability and comprehensibility of the software. In order to address
this problem, the ‘Use Case Tool’ was developed for the Software Engineering
Group of Leibniz University.

The first step was to elicit requirements from the supervisor of this thesis.
To ensure that all requirements and ideas were met, a mock-up and activity
diagram were created and reviewed. The requirements were prioritized,
so that the development process was clearly structured. Throughout the
development process, difficulties and constant feedback via weekly meetings
were handled in an agile manner. This helped to further improve the
tool’s accuracy, comprehensibility, and capabilities. In addition, the tool
is designed to be as self-explanatory as possible, so that it can be easily used
for future studies by the Software Engineering Group.

The developed tool is designed to be used in the planning phase of new
software. It is able to parse Use Case tables of an SRS and display them
in the UI. Users can extend the main scenario and extensions steps with
explainability needs that arise when reading a step. All parsed and extended
Use Case tables can be exported to PDF and CSV format. To resume work
after a break, both formats can be reimported.

Usability tests with nine participants were conducted to test the usability
of the ‘Use Case Tool’. The average score resulting from the SUS is 87.8%,
which indicates excellent usability. The additional qualitative data collected
provided more details about inconsistencies and errors, as well as positive

41

42 CHAPTER 8. CONCLUSION AND FUTURE WORK

elements of the tool. Overall, the study found that the main and additional
features were well integrated. The identified errors and misleading text
elements in the UI have been improved to make the tool even easier to
understand and use. In conclusion, judging by the study and the further
improvements, the ‘Use Case Tool’ seems promising to be used in future
studies for the extension of Use Case tables with explainability needs and
can support requirements engineering for explainability requirements in early
stages of software development.

8.2 Future Work

In the study, the ‘Use Case Tool’ already achieved an excellent average SUS
score. To further improve the tool, according to the results of the study,
some features can be modified and added.

For example, the message box that opens each time the import button is
clicked could only be displayed when an input field is newly edited. This way,
users would not be confused as to whether or not they had edited an input
field again. To switch between the input fields without using the mouse, the
study revealed that some participants would prefer to use the tabulator key.
This is another feature that can be considered.

The Use Case diagram is not currently exported to the PDF file, which
may also be a feature to implement. Since this was mentioned in the study
and the Use Case diagram shows an overview of all Use Case tables, future
users may miss the diagram in the exported file. The same applies to
‘Erläuterungen und Details’, the text below the Use Case tables. This was
also missed by one participant, and may contain explanations. Therefore, it
is important to parse and add ‘Erläuterungen und Details’ to the ‘Use Case
Tool’, as this may already clarify explainability needs that arise without it.
To achieve this, another text recognition library must be used. A pure
text recognition library could also help to make the parsing of the Use
Case diagram more safe, because it can be searched for the title “Use Case
Diagramm” and the image below can be parsed.

Import is currently only available for PDF files and reimport for CSV
and PDF files. To extend the import for an SRS, LaTeX and Word files
could be considered. Since LaTeX and Word files can be saved as copyable
PDF files, the import is an additional feature for these files, as without it
only one additional step is required when saving.

Since some participants in the study were looking for a save button, this
could be added or the export button could be revised. One way to revise
the export button is to add a menu bar at the top with the usual ‘Save’
and ‘Save as...’ options. In this case, the ‘Ctrl’ and ‘S’ key combination
could also be implemented for power users. Since the words ‘Save’ and ‘Save
as...’ can be misleading in the context of the ‘Use Case Tool’, they could

8.2. FUTURE WORK 43

be replaced with ‘Export’ and ‘Export as...’. If a menu bar is added, the
import button could also be placed in it. Another option might be to save
changes automatically, for example when selecting a different Use Case table
or constantly when editing an input field. In this case, it needs to be defined
where to save it and when to ask for export.

To make the ‘Use Case Tool’ more modular for different two-column
tables, an option could be implemented to let the user define the hard
coded strings as “Use Case”, “Hauptszenario”, “Erweiterung” and “Erklä-
rungsbedarf”. This would allow for different Use Case table templates and
other languages. More modularity could also be achieved by using Optical
Character Recognition (OCR) to import a non-copyable PDF file.

44 CHAPTER 8. CONCLUSION AND FUTURE WORK

Appendix A

Acceptance Testing

A.1 Test Case 1 - File Import

Setup: The program was installed and opened on the user’s computer/lap-
top with the Windows 11 operating system.

Input Output
The user presses the “Import...”
button.

The program displays a file selec-
tion dialog.

The user selects the file “Working-
time-table.pdf” in the dialog and
then presses the “Öffnen” button.

The program opens the Use Case
overview with a selection of the
individual Use Cases on the left-
hand side of the user interface and
the content of the selected first
Use Case “UC1: Einloggen” on the
right.

A.2 Test Case 2 - Choose Use Case

Setup: The program was installed on the user’s computer/laptop with the
Windows 11 operating system, opened and the specification “Working-time-
table.pdf” was imported.

Input Output
The user selects “UC2: Passwort
ändern” in the left-hand menu.

The program displays the content
of “UC2: Passwort ändern” on the
right-hand side.

45

46 APPENDIX A. ACCEPTANCE TESTING

A.3 Test Case 3 - Enrich Use Case with Explain-
ability

Setup: The program was installed on the user’s computer/laptop with the
Windows 11 operating system, opened and the specification “Working-time-
table.pdf” was imported. The user is in “UC2: Passwort ändern” in the user
interface.

Input Output
The user clicks on the text field for
step 6 in the main scenario.

The program allows you to make an
entry in the text field for step 6 of
the main scenario.

The user inserts the text “Was
passiert mit meinem alten Pass-
wort? Wird es überschrieben?” into
the text field.

The program displays the text
“Was passiert mit meinem alten
Passwort? Wird es überschrieben?”
in the text field.

A.4 Test Case 4 - File Export

Setup: The program was installed on the user’s computer/laptop with the
Windows 11 operating system, opened and the specification “Working-time-
table.pdf” was imported. The user has added a need for explanation in “UC2:
Passwort ändern”.

Input Output
The user presses the “Export...”
button.

The program opens a selection with
PDF and CSV.

The user selects PDF format. The program saves all Use Cases
and the additional explanation in
Use Case 2 in its table with a new
row “Erklärungsbedarf” as a PDF
file.

Appendix B

Usability Questionnaire

Figure B.1: SUS questionnaire in German used in the study

Figure B.2: Likert scale in German used in the study

47

48 APPENDIX B. USABILITY QUESTIONNAIRE

Appendix C

Improvements Screenshots

Figure C.1: Improved ImportView of the ‘Use Case Tool’

Figure C.2: Improved message box after exporting a file with the
‘Use Case Tool’

49

50 APPENDIX C. IMPROVEMENTS SCREENSHOTS

Figure C.3: Improved button in the UseCaseView of the ‘Use Case Tool’,
displayed in its minimum height and width

Appendix D

Contents on the USB Drive

The USB drive supplied with this thesis contains the following:

• The Git repository called “ba-denise” that was used to track the
development process of the ‘Use Case Tool’

• The SRS “Working-time-table.pdf” used for acceptance testing

• A directory called “TestSpecifications” containing eleven SRSs that
have been used to test the ‘Use Case Tool’ during development

• A directory called “UseCaseTool_UsabilityTest”, which contains the
‘Use Case Tool’ in executable form at the time of the usability tests

• A directory called “Study_Evaluation” containing:

– The results of the SUS questionnaire

– The calculated results of the SUS questionnaire

– The anonymized notes taken during the Usability testing

– The summarized comments and observations based on the notes

• A directory called “DrawnFigures”, which contains self-drawn figures
and the self-drawn pencil icon

• A directory called “UseCaseTool_improved”, which contains the ‘Use
Case Tool’ in executable form after all improvements have been made

• The LaTeX archive used to build this document

51

52 APPENDIX D. CONTENTS ON THE USB DRIVE

List of Figures

2.1 Example of a Use Case diagram (depicting the Use Cases of
the software developed in this thesis) 6

2.2 SUS score and it’s acceptance, by Bangor et al. [1] 9
2.3 Model-View-ViewModel pattern according to Stonis [48] . . . 11

3.1 Activity diagram of the ‘Use Case Tool’ 16
3.2 UI Mockup of the ‘Use Case Tool’ 17

4.1 ImportView of the ‘Use Case Tool’ 20
4.2 UseCaseView of the ‘Use Case Tool’ 21
4.3 Hint for Explainability needs for the input fields of the

‘Use Case Tool’ . 24
4.4 The Pencil Icon in the list of Use Case table titles indicates

that a table has been edited 25
4.5 Message box that warns the user when clicking the import or

close button . 25
4.6 Message box indicating successful export 26

5.1 Data collection process of usability testing 28

6.1 Usability test answers of all participants 31
6.2 SUS score for each participant and the average 32

B.1 SUS questionnaire in German used in the study 47
B.2 Likert scale in German used in the study 47

C.1 Improved ImportView of the ‘Use Case Tool’ 49
C.2 Improved message box after exporting a file with the

‘Use Case Tool’ . 49
C.3 Improved button in the UseCaseView of the ‘Use Case Tool’,

displayed in its minimum height and width 50

53

54 LIST OF FIGURES

List of Tables

2.1 Use Case table template according to Cockburn [17, 18],
adapted for use by the Software Engineering Group 5

2.2 5-point Likert responding format [13, 37, 49] 8
2.3 Brooke’s SUS Statements [12] 9

5.1 Modified usability test statements for the ‘Use Case Tool’ . . 30

6.1 Comments and observations from usability testing 33

55

56 LIST OF TABLES

Acronyms

IEEE Institute of Electrical and Electronic Engineers. 1, 3

MVVM Model-View-ViewModel. 10, 19

NFR Non-Functional Requirement. 1, 3, 7, 15, 27

SRS Software Requirements Specification. 1–4, 7, 11–16, 19, 20, 22, 26–28,
34, 37, 38, 40–42

SU System Usability. 9

SUS System Usability Scale. 8, 9, 29, 31, 32, 35, 41, 42, 53, 55

UI User Interface. 2, 7, 10, 11, 14, 15, 17, 19, 21–25, 33, 34, 38, 41, 42, 53

UML Unified Modeling Language. 6

WPF Windows Presentation Foundation. 10

XAML eXtensible Application Markup Language. 10, 11

57

58 Acronyms

Bibliography

[1] P. T. K. Aaron Bangor and J. T. Miller. An empirical evaluation of
the system usability scale. International Journal of Human–Computer
Interaction, 24(6):574–594, 2008.

[2] S. W. Ali, Q. A. Ahmed, and I. Shafi. Process to enhance the quality
of software requirement specification document. In 2018 International
Conference on Engineering and Emerging Technologies (ICEET), pages
1–7, 2018.

[3] M. Aristarán and M. Tigas. Introducing tabula. Available online
at https://source.opennews.org/articles/introducing-tabula/,
accessed on 2024-02-24.

[4] M. Aristarán, M. Tigas, J. B. Merrill, J. Das, D. Frackman, and
T. Swicegood. Github: tabulapdf / tabula. Available online at
https://github.com/tabulapdf/tabula, accessed on 2024-02-24.

[5] AvaloniaCommunity. GitHub: AvaloniaCommunity/Message-
Box.Avalonia. Available online at https://github.com/
AvaloniaCommunity/MessageBox.Avalonia, accessed on 2024-03-
06.

[6] AvaloniaUI OÜ. AvaloniaUI: FAQ. Available online at https://docs.
avaloniaui.net/docs/faq, accessed on 2024-01-23.

[7] AvaloniaUI OÜ. AvaloniaUI on GitHub. Available online at https:
//github.com/AvaloniaUI/Avalonia, accessed on 2024-01-23.

[8] AvaloniaUI OÜ. AvaloniaUI: Welcome. Available online at https://
docs.avaloniaui.net/docs/welcome, accessed on 2024-01-23.

[9] AvaloniaUI OÜ. Transitioningcontentcontrol. Available on-
line at https://docs.avaloniaui.net/docs/reference/controls/
detailed-reference/transitioningcontentcontrol, accessed on
2024-03-04.

[10] BobLd. Github: Bobld / tabula-sharp. Available online at https:
//github.com/BobLd/tabula-sharp, accessed on 2024-02-24.

59

https://source.opennews.org/articles/introducing-tabula/
https://github.com/tabulapdf/tabula
https://github.com/AvaloniaCommunity/MessageBox.Avalonia
https://github.com/AvaloniaCommunity/MessageBox.Avalonia
https://docs.avaloniaui.net/docs/faq
https://docs.avaloniaui.net/docs/faq
https://github.com/AvaloniaUI/Avalonia
https://github.com/AvaloniaUI/Avalonia
https://docs.avaloniaui.net/docs/welcome
https://docs.avaloniaui.net/docs/welcome
https://docs.avaloniaui.net/docs/reference/controls/detailed-reference/transitioningcontentcontrol
https://docs.avaloniaui.net/docs/reference/controls/detailed-reference/transitioningcontentcontrol
https://github.com/BobLd/tabula-sharp
https://github.com/BobLd/tabula-sharp

60 BIBLIOGRAPHY

[11] P. Bourque and R. Fairley. Guide to the Software Engineering Body of
Knowledge - SWEBOK V3.0. IEEE Computer Society, 01 2014.

[12] J. Brooke. Sus: a “quick and dirty usability scale. Usability evaluation
in industry, 189(3):189–194, 1996.

[13] J. Carifio and R. Perla. Ten common misunderstandings, misconcep-
tions, persistent myths and urban legends about likert scales and likert
response formats and their antidotes. Journal of Social Sciences, 3, 03
2007.

[14] L. Chazette, W. Brunotte, and T. Speith. Exploring explainability: A
definition, a model, and a knowledge catalogue. In 2021 IEEE 29th
International Requirements Engineering Conference (RE), pages 197–
208, 2021.

[15] L. Chazette, W. Brunotte, and T. Speith. Explainable software systems:
From requirements analysis to system evaluation. Requirements
Engineering, 27(4):457–487, dec 2022.

[16] L. Chazette and K. Schneider. Explainability as a non-functional
requirement: challenges and recommendations. Requirements Engineer-
ing, 25(4):493–514, 2020.

[17] A. Cockburn. Basic use case template. Humans and Technology,
Technical Report, 96:28, 1998.

[18] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.

[19] H. Deters, J. Droste, M. Fechner, and J. Klünder. Explanations on
demand - a technique for eliciting the actual need for explanations.
In 2023 IEEE 31st International Requirements Engineering Conference
Workshops (REW), pages 345–351, 2023.

[20] H. Deters, J. Droste, and K. Schneider. A means to what end?
evaluating the explainability of software systems using goal-oriented
heuristics. In Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering, EASE ’23, page
329–338, New York, NY, USA, 2023. Association for Computing
Machinery.

[21] Europäische Kommission. Deutschland: Finanzierung der
Hochschulbildung. Available online at https://eurydice.
eacea.ec.europa.eu/de/national-education-systems/germany/
finanzierung-der-hochschulbildung, accessed on 2024-02-20.

[22] A. Fatwanto. Software requirements specification analysis using natural
language processing technique. In 2013 International Conference on
QiR, pages 105–110, 2013.

https://eurydice.eacea.ec.europa.eu/de/national-education-systems/germany/finanzierung-der-hochschulbildung
https://eurydice.eacea.ec.europa.eu/de/national-education-systems/germany/finanzierung-der-hochschulbildung
https://eurydice.eacea.ec.europa.eu/de/national-education-systems/germany/finanzierung-der-hochschulbildung

BIBLIOGRAPHY 61

[23] U. Hammerschall and G. Beneken. Software Requirements . Pearson
Deutschland, 2013.

[24] P. Hsia, D. Kung, and C. Sell. Software requirements and acceptance
testing. Annals of Software Engineering, 3(1):291–317, 1997.

[25] Institute of Electrical and Electronics Engineers. IEEE guide for
software requirements specifications. IEEE Std 830-1984, pages 1–26,
1984.

[26] Institute of Electrical and Electronics Engineers. IEEE recommended
practice for software requirements specifications. IEEE Std 830-1998,
pages 1–40, 1998.

[27] Institute of Electrical and Electronics Engineers. ISO/IEC/IEEE
international standard - systems and software engineering–vocabulary.
ISO/IEC/IEEE 24765:2017(E), pages 1–541, 2017.

[28] Institute of Electrical and Electronics Engineers. ISO/IEC/IEEE
international standard - systems and software engineering – life cycle
processes – requirements engineering. ISO/IEC/IEEE 29148:2018(E),
pages 1–104, 2018.

[29] I. Jacobson. Object-oriented development in an industrial environment.
In Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA ’87, page 183–191, New York,
NY, USA, 1987. Association for Computing Machinery.

[30] I. Jacobson and A. Cockburn. Use cases are essential: Use cases provide
a proven method to capture and explain the requirements of a system in
a concise and easily understood format. Queue, 21(5):66–86, nov 2023.

[31] A. Joshi, S. Kale, S. Chandel, and D. Pal. Likert scale: Explored and
explained. British Journal of Applied Science & Technology, 7:396–403,
01 2015.

[32] S. Kirk. 10 years of avalonia. Available online at https://avaloniaui.
net/Blog/10-years-of-avalonia, accessed on 2024-01-23.

[33] K. Konrad. Lautes Denken, pages 476–490. Springer Fachmedien
Wiesbaden, Wiesbaden, 2020.

[34] J. Kuchta and P. Padhiyar. Extracting concepts from the software
requirements specification using natural language processing. In 2018
11th International Conference on Human System Interaction (HSI),
pages 443–448, 2018.

https://avaloniaui.net/Blog/10-years-of-avalonia
https://avaloniaui.net/Blog/10-years-of-avalonia

62 BIBLIOGRAPHY

[35] M. A. Köhl, K. Baum, M. Langer, D. Oster, T. Speith, and
D. Bohlender. Explainability as a non-functional requirement. In 2019
IEEE 27th International Requirements Engineering Conference (RE),
pages 363–368, 2019.

[36] B. Lepri, N. Oliver, E. Letouzé, A. Pentland, and P. Vinck. Fair,
Transparent, and Accountable Algorithmic Decision-making Processes.
Philosophy & Technology, 31(4):611–627, 2018.

[37] R. Likert. A Technique for the Measurement of Attitudes. Number Nr.
136-165 in A Technique for the Measurement of Attitudes. Archives of
Psychology, 1932.

[38] L. A. MacVittie. XAML in a Nutshell. O’Reilly Media, Inc., 2006.

[39] J. McManus. A stakeholder perspective within software engineering
projects. In 2004 IEEE International Engineering Management
Conference (IEEE Cat. No.04CH37574), volume 2, pages 880–884 Vol.2,
2004.

[40] Microsoft. Create .net apps faster with nuget. Available online at https:
//www.nuget.org, accessed on 2024-03-02.

[41] R. Miller and C. T. Collins. Acceptance testing. Proc. XPUniverse,
238, 2001.

[42] M. T. Orne. Demand characteristics and the concept of quasi-
controls. Artifacts in behavioral research: Robert Rosenthal and Ralph
L. Rosnow’s classic books, 110:110–137, 2009.

[43] M. Osborne and C. MacNish. Processing natural language software
requirement specifications. In Proceedings of the Second International
Conference on Requirements Engineering, pages 229–236, 1996.

[44] J. Pruitt and T. Adlin. The persona lifecycle: keeping people in mind
throughout product design. Elsevier, 2010.

[45] J. Saldaña. The Coding Manual for Qualitative Researchers. Sage, 2nd
edition, 2013.

[46] D. Stahlberg and D. Frey. Einstellungen: Struktur, Messung
und Funktion, pages 219–252. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1997.

[47] S. Steiger. GitHub: PdfSharpCore/docs/MigraDocCore/index.md.
Available online at https://github.com/ststeiger/PdfSharpCore/
blob/master/docs/MigraDocCore/index.md, accessed on 2024-03-05.

https://www.nuget.org
https://www.nuget.org
https://github.com/ststeiger/PdfSharpCore/blob/master/docs/MigraDocCore/index.md
https://github.com/ststeiger/PdfSharpCore/blob/master/docs/MigraDocCore/index.md

BIBLIOGRAPHY 63

[48] M. Stonis. Enterprise Application Patterns Using .NET MAUI.
Microsoft Developer Division, .NET, and Visual Studio product teams,
2022.

[49] G. Sullivan and A. Artino. Analyzing and interpreting data from likert-
type scales. Journal of graduate medical education, 5:541–542, 12 2013.

[50] W. Tichy. Hints for reviewing empirical work in software engineering.
Empirical Software Engineering, 5:309–312, 12 2000.

[51] UglyToad. GitHub: UglyToad/PdfPig. Available online at https://
github.com/UglyToad/PdfPig, accessed on 2024-03-05.

[52] A. Umber and I. S. Bajwa. Minimizing ambiguity in natural language
software requirements specification. In 2011 Sixth International
Conference on Digital Information Management, pages 102–107, 2011.

[53] Uno Platform. Create beautiful .net apps faster. Available online at
https://platform.uno, accessed on 2024-03-02.

https://github.com/UglyToad/PdfPig
https://github.com/UglyToad/PdfPig
https://platform.uno

64 BIBLIOGRAPHY

	Introduction
	Motivation
	Problem Statement
	Solution Approach
	Thesis Structure

	Background and Related Work
	Software Requirements Specification
	Use Cases
	Acceptance Testing

	Explainability
	Likert Scale
	System Usability Scale
	Extensible Application Markup Language
	Avalonia
	Model-View-ViewModel Pattern
	Tabula
	Related Work

	Requirements Elicitation
	Stakeholders
	Functional Requirements
	Non-functional Requirements
	Workflow
	MockUp
	Explainability Requirements

	Implementation
	Prerequisites
	Development Process
	User Interface
	Import
	Export
	Add-Ons

	Difficulties

	Study Design
	Participants
	Procedure
	Data Collection
	Data Analysis

	Results
	Quantitative Results
	Qualitative Results

	Discussion
	Discussion of Results
	Improvements
	Limitation and Challenges

	Conclusion and Future Work
	Conclusion
	Future Work

	Acceptance Testing
	Test Case 1 - File Import
	Test Case 2 - Choose Use Case
	Test Case 3 - Enrich Use Case with Explainability
	Test Case 4 - File Export

	Usability Questionnaire
	Improvements Screenshots
	Contents on the USB Drive

