
Gottfried Wilhelm
Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik
Institut für Praktische Informatik
Fachgebiet Software Engineering

Weiterentwicklung einer
Software-Suite für das Aufnehmen

und Abspielen von Testvideos

Bachelor’s Thesis

im Studiengang Computer Science

von

Shaochen Wu

Prüfer: Prof. Dr. rer. nat. Kurt Schneider
Zweitprüfer: Dr. Jil Ann-Christin Klünder

Betreuer: M. Sc. Jianwei Shi

Hannover, 15.09.2023

ii

Declaration of Authorship

I hereby declare that the Bachelor’s Thesis is my unaided work. All direct
or indirect sources used are acknowledged as references. I am aware that the
thesis in digital form can be examined for the use of unauthorized aid and
determine whether the thesis as a whole or parts incorporated in it may be
deemed as plagiarism. For the comparison of my work with existing sources,
I agree that it shall be entered in a database where it shall also remain after
examination, to enable comparison with future theses submitted. Further
rights of reproduction and usage, however, are not granted here. This paper
was not previously presented to another examination board and has not been
published.

Hannover, den 15.09.2023

Shaochen Wu

iii

iv

Zusammenfassung

In großen Softwareprojekten und globalen Entwicklungen ist eine häufige
Herausforderung die unzureichende Kommunikation zwischen den Stake-
holdern. Aufgrund des Arbeitsablaufs und der Herangehensweise in der
agilen Entwicklung können nur bestimmte Stakeholder Feedback geben.
Dies kann zu Missverständnissen bezüglich der Projektanforderungen führen
und potenziell dazu führen, dass Softwareprodukte geliefert werden, die
nicht den Erwartungen der Stakeholder oder Kunden entsprechen. Um
dieses Problem zu lösen, ist die Erstellung und Verwendung von Videos
zur Einholung von Feedback von Stakeholdern in Kombination mit dem
BDD-Framework eine geeignete Lösung. Die dafür verwendeten Tools sind
ScreenTracer und ScreenTracerViewer. Es gibt jedoch immer noch viele
Probleme und Verbesserungsmöglichkeiten bei ScreenTracer und ScreenTrac-
erViewer. Daher ist die kontinuierliche Weiterentwicklung von ScreenTracer
und ScreenTracerViewer geplant. Der aktuelle Treiber für ScreenTracer
weist Instabilitäten auf und soll durch eine robustere Alternative ersetzt
werden. Darüber hinaus ermöglichen Verbesserungen an ScreenTracer die
Generierung sowohl einer neuen Video-Datei im neuen Format als auch einer
WebVTT-Datei mit Ereignisinformationen, die mit dem Video synchronisiert
sind. Die Ereignisinformationen werden dem Gherkin-Format entsprechen
und Zeitstempel enthalten, wann die Ereignisse im Video auftreten. Nach
den Verbesserungen an ScreenTracer verschiebt sich der Fokus dieses Pro-
jekts auf die Verbesserung von ScreenTracerViewer. Derzeit stehen zwei
Versionen von Screentracerviewer für weitere Entwicklung zur Verfügung:
die Originalversion und eine HTML-Version. Die endgültige Wahl für
dieses Projekt ist die HTML-Version. Diese Entscheidung basiert auf der
Prämisse, die gleiche Funktionalität zu erreichen. Unter dieser Prämisse ist
die Entwicklung der HTML-Version von Screentracerviewer einfacher und
besser geeignet, sie möglicherweise in Zukunft zu einer Browser-Erweiterung
umzuwandeln. Derzeit bietet die HTML-Version von ScreenTracerViewer
eingeschränkte Funktionalität und verwendet ausschließlich ein Frontend-
Framework eines Drittanbieters, um eine Benutzeroberfläche bereitzustellen.
Es sind umfangreiche Erweiterungen geplant, um Benutzern zu ermöglichen,
ausführbare Dateien mit ScreenTracer zu öffnen, automatisch Video- und
WebVTT-Dateien zu generieren. Anschließend können Benutzer Screen-

v

vi

TracerViewer verwenden, um mehrere lokale Video-Dateien zu öffnen und
gleichzeitig die entsprechenden Gherkin-Spezifikationen innerhalb der Be-
nutzeroberfläche von ScreenTracerViewer anzuzeigen. Dieser umfassende
Ansatz gewährleistet, dass alle Teammitglieder, Kunden und Stakeholder in
Echtzeit über den Fortschritt der Softwareentwicklung und deren Einhaltung
aller Softwareanforderungen informiert bleiben.

Abstract

In large software projects and global development, a common challenge is
inadequate communication among stakeholders. Due to the workflow and
approach of agile development, only a subset of stakeholders can provide
feedback. This can lead to misunderstandings of project requirements,
potentially resulting in the delivery of software products that do not
meet stakeholder or customer expectations. For this issue, creating and
using videos to obtain feedback from stakeholders, combined with the
BDD framework, is a viable solution, and the tools used for creating
and using videos are ScreenTracer and ScreenTracerViewer. However,
there are still many issues and areas for improvement with ScreenTracer
and ScreenTracerViewer. Therefore, ongoing development of ScreenTracer
and ScreenTracerViewer is planned. The current driver for ScreenTracer
exhibits instability and is set to be replaced by a more robust alternative.
Additionally, improvements to ScreenTracer will enable it to generate both
a new format video file and a WebVTT file containing event information
synchronized with the video. The event information will adhere to the
Gherkin format and include timestamps of when the events occur in the
video. Following the enhancements to ScreenTracer, the focus of this project
will shift to the improvement of ScreenTracerViewer. There are currently
two versions of Screentracerviewer available for further development: the
original version and an HTML version. The final choice for this project
is the HTML version. This decision is based on the premise of achieving
the same functionality, under this premise, developing the HTML version
of Screentracerviewer is simpler and more conducive to potentially turning
it into a browser extension in the future. Presently, ScreenTracerViewer of
HTML version offers limited functionality, employing a third-party frontend
framework solely for providing a user interface. Extensive feature additions
are planned to empower users to open executable files with ScreenTracer,
automatically generating video and WebVTT files. Subsequently, users can
utilize ScreenTracerViewer to open multiple local video files and concurrently
view corresponding Gherkin specifications within the ScreenTracerViewer
interface. This comprehensive approach ensures that all team members,
customers, and stakeholders can stay updated in real-time on the software
development progress and its compliance with all software requirements.

vii

viii

Contents

1 Introduction 1
1.1 Research Aims and Objectives 1
1.2 Structure of the thesis . 2

2 Fundamentals 3
2.1 Related Works . 3

2.1.1 Challenges of project management in global software
development: A client-vendor analysis 3

2.1.2 State of Practice of User-Developer Communication in
Large-Scale IT Projects 3

2.1.3 BDD in Action: Behavior-driven development for the
whole software lifecycle 4

2.1.4 Using GUI Test Videos to Obtain Stakeholders’ Feedback 4
2.1.5 Who tested my software? Testing as an organization-

ally cross-cutting activity 4
2.1.6 Stakeholder participation in the development of an

electronic medical record system in Malawi 4
2.2 BDD: Behavior-Driven Development 5
2.3 SharpAvi . 5
2.4 SpecFlow . 5
2.5 LivingDoc . 6
2.6 Selenium IDE . 7
2.7 ScreenTracer . 7

3 Requirements 9
3.1 Design process . 9
3.2 Stakeholders . 9
3.3 Mandatory Requirements . 10
3.4 Optional Requirements . 11

4 Implementation 13

ix

x CONTENTS

4.1 R1: When the user ends the screen recording, ScreenTracer
shall be able to generate a video and automatically store the
video in .AVI format. 13

4.2 R2: When the user ends the screen recording, ScreenTracer
shall be able to automatically store a link between time
periods of the video and the Gherkin specification in a file
(e.g. json, csv). 14

4.3 R3: When a video file is playing in ScreenTracerViewer,
ScreenTracerViewer shall provide the user with the ability
to also see the Gherkin specification of this video (Gherkin
specification uses the Given-When-Then grammar to describe
what is happening in the video). 17
4.3.1 How to convert scenario files into test codes 18

4.4 R4: When multiple video files are open in ScreenTrac-
erViewer, ScreenTracerViewer shall separate the multiple
videos by a thick vertical line in the progress bar and provide
the user with the ability to play multiple videos under one
view in ScreenTracerViewer. 19

4.5 R5: When multiple video files are open in ScreenTrac-
erViewer, ScreenTracerViewer shall provide the user with the
ability to define the playback order of videos. 21

5 Evaluation and Discussion 23
5.1 Test Environment . 23
5.2 Test Case . 23
5.3 Test Results . 34
5.4 The Practical Use of ScreenTracer and ScreenTracerViewer . 35

5.4.1 The benefits of using ScreenTracer and ScreenTrac-
erViewer . 36

5.5 Software development process of BDD 36
5.6 Gherkin and Test Case . 38
5.7 The comparison between BDD- and traditional software

development process . 40

6 Conclusion 43
6.1 Conclusion . 43
6.2 Future Work . 44

A Appendix A 45

Chapter 1

Introduction

A common challenge encountered in large software projects and global
software development is inadequate communication among stakeholders. In
agile software development, feedback is typically obtained during review
meetings, such as sprint planning meetings. However, these meetings often
involve only the on-site customer and the development team, excluding other
relevant stakeholders from providing feedback. This limitation can result in
misunderstandings regarding project requirements, potentially leading to the
implementation of software with incorrect or omitted functionality. Conse-
quently, this can lead to dissatisfaction among stakeholders or customers. To
effectively tackle this problem, ScreenTracer and ScreenTracerViewer will be
developed and improved to create and utilize videos for obtaining feedback
from stakeholders.

1.1 Research Aims and Objectives

The existing ScreenTracer has the capability to run executable files and
record the screen during their execution. The screen recording process
terminates simultaneously with the completion of its execution of the
executable file and automatically generates a video file. However, the current
driver is choppy. On the other hand, the current state of ScreenTracerViewer
is rather limited in terms of functionality. It primarily utilizes a third-
party framework to establish a basic user interface. The main goal of this
project is to develop and improve ScreenTracer and ScreenTracerViewer.
In the initial phase, the primary objective is to enhance Screentracer for
improved screen recording stability. In the second phase, the continued
development of the existing ScreenTracerViewer aims to enable customers
and stakeholders to use it for verifying whether the software complies with
all the software requirements. The objective is to enhance Screentracer and
Screentracerviewer to better assist software development teams in delivering
software products that satisfy customers and stakeholders.

1

2 CHAPTER 1. INTRODUCTION

1.2 Structure of the thesis

This thesis contains seven chapters. Chapter 1 introduces readers to the goals
and objectives of this thesis and gives readers the structure of this thesis.
Chapter 2 lists the related works that this thesis is based on and explains the
basic fundamentals. Chapter 3 lists all main and optional requirements that
are set for ScreenTracer and ScreenTracerViewer during the development
phase. Chapter 4 gives the ideas and processes of implementing all the
mandatory requirements. Chapter 5 describes the completion status of this
project through Test Cases and collects additional summaries, comparisons,
and explanations of models and processes based on searched and read
information and related work. Chapter 6 reviews the work and proposes
ideas on how future work can be done to continue developing ScreenTracer
and ScreenTracerViewer.

Chapter 2

Fundamentals

This Chapter lists and introduces the works related to this thesis. These
related works will serve as background material to better explain the key
themes of this work.

2.1 Related Works

2.1.1 Challenges of project management in global software
development: A client-vendor analysis

Global Software Development (GSD) is the process of developing software by
different teams located in various parts of the globe. This paper, authored by
Niazi et al. [1], identifies challenges from the perspectives of both clients and
vendors that could potentially disrupt the successful management of GSD
projects. The challenges identified in this article are also the ones that this
project aims to address, as reflected in Chapter 1.

2.1.2 State of Practice of User-Developer Communication in
Large-Scale IT Projects

Abelein and Paech [2] conducted a series of semi-structured interviews
with twelve experts, and the results indicated that direct communication
between users and developers was limited. These interviews helped in
understanding the current practices and issues, confirming the need for
improved communication in large IT projects. This article has provided me
with a better understanding of the role and significance of Screentracerviewer
in development.

3

4 CHAPTER 2. FUNDAMENTALS

2.1.3 BDD in Action: Behavior-driven development for the
whole software lifecycle

Smart and Molak [3] wrote this book to introduce BDD. Readers can learn
BDD step-by-step through this book. The author also shows many useful
techniques and tools in this book to help readers use BDD better in actual
development process. The content of this book is reflected in both Chapter 6,
Section 6.4, titled "Software Development Process of BDD," and the present
Chapter, Section 2.2, titled "BDD - Behavior-Driven Development."

2.1.4 Using GUI Test Videos to Obtain Stakeholders’ Feed-
back

In software projects, stakeholders can give valuable feedback on software
demonstrations. However, in agile software development, only the on-
site customer and the development team attend such meetings, and other
stakeholders cannot give feedback. This can lead to misunderstandings
regarding the requirements, and then the implemented software can have
wrong or missing functionality. This will dissatisfied stakeholders or
customers. For this problem, Shi et al. [4] gave a solution, which is to
obtain feedback from stakeholders by creating (through existing successful
GUI tests) and using videos. This project is a practical implementation of
this idea.

2.1.5 Who tested my software? Testing as an organization-
ally cross-cutting activity

To gain a better understanding of how testing is conducted in real-world
environments, Mäntylä et al. [5] conducted interviews with three software
companies and completed a research. The research revealed that testing is
not only performed by testing experts; employees in different organizational
roles within the company have varying defect detection and fix rates. They
concluded that it is crucial to understand the diversity of individuals involved
in software testing from the perspective of end-users and the relevance of
validation. They also provided their recommendations. This article has
provided me with a more comprehensive understanding of software testing
in real-world companies. Furthermore, it has also helped me understand why
ScreenTracerViewer chose to use structured natural language descriptions.

2.1.6 Stakeholder participation in the development of an
electronic medical record system in Malawi

In this paper, Chawani et al. [6] focus on the involvement of stakeholders in
the development of an Electronic Medical Record (EMR) system for health
facilities in Malawi, Africa. They conduct a study on the diverse roles and

2.2. BDD: BEHAVIOR-DRIVEN DEVELOPMENT 5

forms of engagement among these stakeholders. The paper illustrates how
participation evolves over time and with the progress of the project, and
it also highlights the challenges faced by stakeholders in participating in
impoverished environments. This paper has provided me with insights into
the varying situations of stakeholders in different environments.

2.2 BDD: Behavior-Driven Development

In software engineering, Behavior-Driven Development (BDD) is a software
development process that aligns well with the agile software development
approach. It promotes collaboration among development team (developers
and testers), product managers, and customers representatives within
a software project. BDD was evolved from Test-Driven Development
(TDD). This methodology combines the fundamental principles of TDD
with concepts from domain-driven design and object-oriented analysis and
design, offering software development and management teams a shared
framework and tools for collaborative software development. BDD leverages
simple formatted natural language (e.g., Gherkin) to enhance communication
between development teams, product managers and customers. This
facilitates a better understanding of business objectives by the development
team, allowing them to align their efforts with the product requirements
defined by product managers.

2.3 SharpAvi

SharpAvi is a simple .NET library designed for the generation of AVI format
video files. It specializes in rendering video sequences without relying on
native APIs like DirectShow or external command-line utilities such as
FFmpeg. This library doesn’t require any external dependencies. It’s entirely
built using pure .NET code. The resulting files adhere to the OpenDML
extensions, allowing for nearly unlimited file sizes, eliminating the previous
2GB limit. Creating a video with SharpAvi involves supplying individual
in-memory bitmaps and audio samples. The library includes a few built-in
encoders for both video and audio. Regardless of the specific codec used, the
output format will always be AVI.

2.4 SpecFlow

SpecFlow is a test automation solution designed for .NET, following the
principles of Behavior-Driven Development (BDD). It provides a platform
to define, manage, and automatically execute human-readable acceptance
tests within .NET projects, including both Full Framework and .NET Core
applications. These tests are composed using Gherkin, a language that

6 CHAPTER 2. FUNDAMENTALS

enables the creation of test cases in a natural and easily understandable
manner. Furthermore, SpecFlow leverages the official Gherkin parser,
supporting more than 70 languages, ensuring versatility and accessibility
across different linguistic contexts. Additionally, SpecFlow has the capability
to generate LivingDoc, a feature that simplifies the process of validating
whether the specified requirements have been met. This functionality is
valuable to both technical and non-technical team members, facilitating a
more intuitive assessment of compliance with the specified requirements.

2.5 LivingDoc

LivingDoc is an extension to the SpecFlow framework. SpecFlow auto-
matically generates validated specification scenarios as living documentation
(LivingDoc). LivingDoc showcases Gherkin feature specifications and their
automated validation results. This documentation can be effortlessly
shared with stakeholders or product managers who may not possess a
understanding of software programming, facilitating effective communication
and collaboration within the development process. An example can be found
in Figure2.1.

Figure 2.1: One sample of LivingDoc

LivingDoc simplifies the process of understanding whether the require-
ments have been met for stakeholders or product managers in real-time. It
provides a straightforward and intuitive way for them to assess the alignment
of the software with the specified requirements.

2.6. SELENIUM IDE 7

2.6 Selenium IDE

Selenium IDE is a browser extension available for Google Chrome, Mozilla
Firefox, and Microsoft Edge. It serves the purpose of recording and repro-
ducing actions of the user within the browser. Selenium IDE records these
actions as test cases using existing Selenium commands, with parameters
defined by the context of each element. Users can subsequently replay these
tests within the IDE by selecting the desired test. The desired test is played
back in the browser and the user can see a step-by-step description of actions
while watching the video playback. Selenium IDE also offers a valuable
feature: the ability to export a test to WebDriver code. This WebDriver
code can be used with ScreenTracer.

2.7 ScreenTracer

ScreenTracer is a project by Holzmann [7]. This software comprises two com-
ponents: ScreenTracer and ScreenTracerViewer. The ScreenTracerViewer
here refers to the original version of ScreenTracerViewer. ScreenTracer is
responsible for recording Selenium test cases and saving them in ".stc"
format files, while ScreenTracerViewer plays ".stc" format files as videos.
ScreenTracerViewer provides a range of useful features to users. It allows
users to select which videos to play and provides play and stop buttons for
video playback control. Additionally, ScreenTracerViewer includes previous
and next screen buttons, enabling users to switch between different videos
in the playlist. While a video is playing, a video progress bar displays the
current time position within the video. Moreover, users have the option to
adjust the playback speed using a slider. A more comprehensive explanation
can be found in a paper authored by Holzmann et al. [8].

8 CHAPTER 2. FUNDAMENTALS

Chapter 3

Requirements

This chapter explains both the mandatory and optional requirements. The
problems which lead to each requirement are to be clarified. In Section 3.1
the design process is further explained. Section 3.2 states the stakeholders.
Section 3.3 lists the mandatory requirements, and Section 3.4 lists the
optional requirements. The template named "FunctionalMASTER" used
for formulating requirements is from Rupp et al. [9].

3.1 Design process

The design process follows the agile methodology. Once the requirements are
gathered, the project is structured into four milestones, which are managed
using the Trello application — a Kanban board tool. Each milestone consists
of various subtasks, each having its own set deadlines. These subtasks are
represented as cards on a Kanban board within Trello. A weekly meeting is
conducted with the supervisor to evaluate the progress made during the week,
address any encountered challenges, and brainstorm ideas for new tasks in
the upcoming week. These new tasks are subsequently added to the Trello
Kanban board. This systematic approach ensures high productivity and
allows for the measurement of work progress on a weekly basis. To maintain
consistent and high-quality code, the project adheres to the Microsoft C#
Coding convention.

3.2 Stakeholders

Stakeholders encompass all members within the development team, in-
cluding software developers and product managers, as well as external
customers. Leveraging video files and Gherkin specifications, developers
can conveniently showcase the software product developed in accordance
with the requirements of customers. Simultaneously, product managers and

9

10 CHAPTER 3. REQUIREMENTS

customers can intuitively verify whether the software product complies with
the specified requirements.

3.3 Mandatory Requirements

R1 When the user ends the screen recording, ScreenTracer shall be able to
generate a video and automatically store the video in .AVI format.

R2 When the user ends the screen recording, ScreenTracer shall be able to
automatically store a link between time periods of the video and the
Gherkin specification in a file (e.g. json, csv).

R3 When a video file is playing in ScreenTracerViewer, ScreenTracerViewer
shall provide the user with the ability to also see the Gherkin specifica-
tion of this video (Gherkin specification uses the Given-When-Then
grammar to describe what is happening in the video).

Figure 3.1: Gherkin specification of the video

3.4. OPTIONAL REQUIREMENTS 11

R4 When multiple video files are open in ScreenTracerViewer, ScreenTrac-
erViewer shall separate the multiple videos by a thick vertical line in
the progress bar and provide the user with the ability to play multiple
videos under one view in ScreenTracerViewer.

R5 When multiple video files are open in ScreenTracerViewer, ScreenTrac-
erViewer shall provide the user with the ability to define the playback
order of videos.

Figure 3.2: Playback order of videos

3.4 Optional Requirements

OR1 SharpAvi is replaced with an MP4 package.

OR2 When the user hovers the mouse over the label of the video in tab bar
of ScreenTracerViewer, ScreenTracerViewer shall be able to display
the full name of the video.

OR3 When ScreenTracer executes an executable file, ScreenTracer shall be
able to modify the name of the obtained executable file and use the
modified name as the name for the generated video file.

12 CHAPTER 3. REQUIREMENTS

Chapter 4

Implementation

This chapter explains the process, methods and ideas of implementing the
requirements in detail.

4.1 R1: When the user ends the screen recording,
ScreenTracer shall be able to generate a video
and automatically store the video in .AVI
format.

To enhance the video recording and generation capabilities of ScreenTracer,
the transition to a more reliable driver was undertaken. The previous
performance shortcomings of driver, characterized by irregularities and
choppiness, necessitated this shift. The objective was to ensure the
production of videos of superior quality. The replacement driver was chosen
after careful consideration, with SharpAvi emerging as the preferred solution.
The primary driver behind this decision was the seamless integration of
the capabilities of SharpAvi to enable automatic video storage in the .AVI
format. This transition was executed through a structured approach.
The initial step involved the integration of the SharpAvi package into the
Visual Studio environment. Subsequently, existing functionalities within
ScreenTracer were adapted and harmonized with features of SharpAvi.
Notably, functions like startRecording() and stopRecording() underwent
restructuring to ensure a cohesive interaction between ScreenTracer and
SharpAvi.

public void StartRecording()
{

try
{

MessageBox.Show("start recording");
/*Elapsed = "00:00";

13

14 CHAPTER 4. IMPLEMENTATION

recordingTimer.Start();*/
string exePath = goalTestExeLoc;
string processName =

Path.GetFileNameWithoutExtension(exePath);
lastFileName = System.IO.Path.Combine(saveDirectory,

processName + ".avi");
//lastFileName =

System.IO.Path.Combine(saveDirectory,
ScenarioGetter() + ".avi"

//recordingArea = w1.GetArea();
recorder = new Recorder(lastFileName, encoder,

encodingQuality, recordingArea);
recordingStopwatch.Start();

}
catch (Exception ex)
{

StopRecording();
MessageBox.Show("error:" + ex.Message);

}
}

4.2 R2: When the user ends the screen recording,
ScreenTracer shall be able to automatically
store a link between time periods of the video
and the Gherkin specification in a file (e.g.
json, csv).

In the previous version of ScreenTracer, its functionality was restricted to
recording and generating videos. However, an extended capability is now
being pursued, aiming to establish an automated connection between specific
time intervals in the video and the corresponding Gherkin specification.
This link will be encapsulated within a designated file. To achieve this, the
initial task involves determining the appropriate file format to accommodate
this association. Several options, such as JSON, CSV, and WebVTT, are
under consideration. Given the overarching goal of seamlessly integrating
this file with the existing HTML player, the preference has been given
to the WebVTT format. The WebVTT format has emerged as the most
suitable choice due to its alignment with HTML requirements and its
inherent simplicity. This format incorporates both timestamps and subtitles.
Timestamps enable the indication of specific temporal segments within
the video, while subtitles effectively describe the corresponding Gherkin
specification. With the file format determined, the subsequent step involves

4.2. R2: WHEN THE USER ENDS THE SCREEN RECORDING, SCREENTRACER SHALL BE ABLE TO AUTOMATICALLY STORE A LINK BETWEEN TIME PERIODS OF THE VIDEO AND THE GHERKIN SPECIFICATION IN A FILE (E.G. JSON, CSV).15

devising an approach to combine time intervals and Gherkin specifications
into a WebVTT file. The specific format for time intervals and Gherkin
specifications in the WebVTT file can be found in Figure4.1.

Figure 4.1: Time intervals and Gherkin specifications are stored in a
WebVTT file

Upon analysis, it has been noted that during the execution of the
Selenium exported .exe file, a series of outputs are displayed within the
console. These outputs provide a detailed account of the unfolding events
within the video. By capturing these outputs and utilizing the time-retrieval
function provided by SharpAvi, ScreenTracer can adeptly integrate both
elements within a WebVTT file. This strategy effectively establishes a
coherent connection between the temporal aspects of the video and the
corresponding Gherkin specification.

private Task<int> RunProcessAsync(Process process)
{

var task = new TaskCompletionSource<int>();

List<string> outputLines = new List<string>();

string videoName = "";

process.Start();

outputLines.Add((recordingStopwatch.StartAt -
recordingStopwatch.StartAt) + " - " + "video start");

while (!process.StandardOutput.EndOfStream)
{

string line = process.StandardOutput.ReadLine();

if (line.Contains("Given") || line.Contains("When")

16 CHAPTER 4. IMPLEMENTATION

|| line.Contains("Then"))
{

timeStopwatch.Start();
outputLines.Add((timeStopwatch.StartAt -

recordingStopwatch.StartAt) + " - " + line);

}

if (line.Contains("Scenario"))
{

videoName += line.Replace("Scenario: ", "");
}

}

outputLines.Add(recordingStopwatch.Elapsed + " - " +
"video is over");

process.WaitForExit();

List<string> webvttTimestamps =
ConvertToWebVTTTimestamps(outputLines);

List<string> subtitleTexts =
GetSubtitleTexts(outputLines);

string webvttContent =
BuildWebVTTContent(webvttTimestamps, subtitleTexts);

string exePath = goalTestExeLoc;
string processName =

Path.GetFileNameWithoutExtension(exePath);
string filePath = saveDirectory + "\\" + videoName +

".vtt";
System.IO.File.WriteAllText(filePath, webvttContent);

process.BeginErrorReadLine();

return task.Task;
}

4.3. R3: WHEN A VIDEO FILE IS PLAYING IN SCREENTRACERVIEWER, SCREENTRACERVIEWER SHALL PROVIDE THE USER WITH THE ABILITY TO ALSO SEE THE GHERKIN SPECIFICATION OF THIS VIDEO (GHERKIN SPECIFICATION USES THE GIVEN-WHEN-THEN GRAMMAR TO DESCRIBE WHAT IS HAPPENING IN THE VIDEO).17

4.3 R3: When a video file is playing in Screen-
TracerViewer, ScreenTracerViewer shall pro-
vide the user with the ability to also see the
Gherkin specification of this video (Gherkin
specification uses the Given-When-Then gram-
mar to describe what is happening in the
video).

To meet this requirement, a feature was integrated into ScreenTracerViewer
to enable user selection of video files from their local directories. Concur-
rently, a webvtt file bearing the same name as the video file is automatically
identified within the corresponding directory. Subsequently, ScreenTrac-
erViewer displays this associated webvtt file as subtitles below the video
playback. The objective of this enhancement is to provide users with direct
access to the Gherkin specification aligned with the video content.

function loadVideoAndSubtitles() {
var fileInput = document.getElementById(’videoInput’);
var videoFiles = fileInput.files;

if (videoFiles.length > 0) {
videosContainer.innerHTML = "";
tabContainer.innerHTML = "";
videoData = [];

for (var i = 0; i < videoFiles.length; i++) {
var videoFile = videoFiles[i];
var objectURL = URL.createObjectURL(videoFile);

loadSubtitles(videoFile, objectURL, i);
}

}
}

This implementation involves storing the Gherkin specification alongside
corresponding timestamps within the webvtt file. The process commences
with the conversion of the Selenium-generated code into an executable
SpecFlow project. The procedural details for this conversion are expounded
upon in subsection 4.3.1, titled "How to convert scenario files into test codes."
Following this, the approach outlined in R2 is employed to retrieve outputs
from the executable SpecFlow project. Specifically, this involves procuring
the Gherkin specification. Subsequently, this specification is harmonized
with pertinent timestamps and deposited within the webvtt file.

18 CHAPTER 4. IMPLEMENTATION

4.3.1 How to convert scenario files into test codes

In the software development process of BDD, developers need to convert
scenarios files into executable automated test codes. Because of the use
of selenium in our project, it is different from the general use of BDD to
develop software products. The flow chart of implementation can be found
in Figure4.2.

Figure 4.2: Process of converting scenario files into test codes

4.4. R4: WHEN MULTIPLE VIDEO FILES ARE OPEN IN SCREENTRACERVIEWER, SCREENTRACERVIEWER SHALL SEPARATE THE MULTIPLE VIDEOS BY A THICK VERTICAL LINE IN THE PROGRESS BAR AND PROVIDE THE USER WITH THE ABILITY TO PLAY MULTIPLE VIDEOS UNDER ONE VIEW IN SCREENTRACERVIEWER.19

(1.) To initiate the process, Selenium is employed for screen recording
and the selection of the storage location of the file generated by Selenium.
The generated file format is ".side."

(2.) After the video recording is completed, developers open the ".side"
file and replay it with the Selenium. Within the Selenium interface, a button
with three dots can be found at the top-left corner. This button provides
the functionality to automatically convert actions of the recorded video into
C# code and export it. Subsequently, developers click on this button and
select the export location.

(3.) Now, developers create a new project in Visual Studio and search
for "Specflow Project" in the search bar, selecting it. This action triggers
the automatic generation of several folders in the Solution Explorer on
the right side of the Visual Studio interface. The folders of interest are
"Features" and "StepDefinitions". Developers right-click the "Features"
folder and select "New Item". An interface appears for selection and search.
Developers click on "Specflow" on the left side of this interface and choose
"Feature File for Specflow". This results in the creation of a new ".feature"
file under the "Features" folder, automatically generating "Scenario" and
"Given...When...Then" (Gherkin) elements. Developers then populate this
file with the software product usage scenario.

(4.) Next, developers create a new empty C# file within the "StepDefi-
nitions" folder. They right-click on the populated ".feature" file and select
"Define Steps". Next, the developer clicks "Copy to clipboard" on the
appear interface. This action automatically converts the content of the filled
".feature" file (BDD) into executable automated test codes, which are then
pasted into the new, empty C# file under the "StepDefinitions" folder.

(5.) Finally, developers integrate the code exported by Selenium into the
corresponding positions, aligning with the "Scenario...Given...When...Then"
structure in the C# file. Through these outlined steps, developers seamlessly
combine the code exported by Selenium with the BDD framework, Specflow.

4.4 R4: When multiple video files are open in
ScreenTracerViewer, ScreenTracerViewer shall
separate the multiple videos by a thick vertical
line in the progress bar and provide the user
with the ability to play multiple videos under
one view in ScreenTracerViewer.

The outlined plan has been realized in an alternative manner. In order
to facilitate user-friendly video selection within the ScreenTracerViewer, the
decision was made to enable the playback of multiple videos in a unified view.
Rather than amalgamating multiple videos into a single entity separated by

20 CHAPTER 4. IMPLEMENTATION

a distinct vertical line in the progress bar, a more intuitive approach was
devised. The solution involved the creation of a tab bar, with each tab
corresponding to an individual video. By clicking on a specific tab, users are
able to seamlessly transition between videos within the view. This design
maintains the capacity to play multiple videos within a single view, yet the
navigation process is markedly more streamlined. The final implementation
style of ScreenTracerViewer can be seen in Figure4.3.

Figure 4.3: ScreenTracerViewer

4.5. R5: WHEN MULTIPLE VIDEO FILES ARE OPEN IN SCREENTRACERVIEWER, SCREENTRACERVIEWER SHALL PROVIDE THE USER WITH THE ABILITY TO DEFINE THE PLAYBACK ORDER OF VIDEOS.21

4.5 R5: When multiple video files are open in
ScreenTracerViewer, ScreenTracerViewer shall
provide the user with the ability to define the
playback order of videos.

To enhance the user experience, ScreenTracerViewer has been equipped
with a feature that facilitates the reordering of videos. This functionality
incorporates tab icons and interactive elements, enabling effortless dragging
and swapping of tabs. This allows users to adjust the sequence of video
content according to their preferences, promoting a more personalized and
intuitive interaction within the ScreenTracerViewer.

function doDragging(event) {
if (isDragging) {
var tabs = document.querySelectorAll(".tab-icon");
for (var i = 0; i < tabs.length; i++) {
tabs[i].style.cursor = "grabbing";

}
...
if (newIndex !== currentIndex) {
swapTabs(currentIndex, newIndex);
activeTabIndex = newIndex;

}
dragEndIndex = newIndex;

}
}

function swapTabs(index1, index2) {
var tabs = document.querySelectorAll(".tab");
var temp = tabs[index1].innerHTML;
tabs[index1].innerHTML = tabs[index2].innerHTML;
tabs[index2].innerHTML = temp;

}

function reorderVideos(index1, index2) {
var tempVideo = videoData[index1];
var tempTracks = tracks[index1];

videoData[index1] = videoData[index2];
tracks[index1] = tracks[index2];

videoData[index2] = tempVideo;
tracks[index2] = tempTracks;

}

22 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation and Discussion

In this chapter, the results of the work are presented and described in Test
Cases. Because the main achievement is to add a lot of functions that
ScreenTracer and ScreenTracerViewer did not have before and most of the
tasks are very technical, so the test case is used as the evaluation. In addition
to the evaluation, this chapter also demonstrates how ScreenTracer and
ScreenTracerViewer are applied in practical software development through a
specific example. This specific example is delved into to derive more related
content. This part of the content serves as a discussion.

5.1 Test Environment

Operating System: [Windows 10 Pro]

SharpAvi: [3.0.1]

.NET: [6.0 and 4.8]

SpecFlow: [3.9.74]

Selenium.WebDriver: [4.10.0]

5.2 Test Case

This section lists all the test cases of this project.

23

24 CHAPTER 5. EVALUATION AND DISCUSSION

Test Case Title: ScreenTracer Video Generation

Test Case ID: TC-001

Objective: To verify that ScreenTracer can successfully
generate a video upon the user ending the
screen recording.

Preconditions: 1. ScreenTracer application is installed and
functional.
2. User has initiated a screen recording
session.

Test Steps: 1. Start the screen recording using
ScreenTracer.
2. Simulate the user’s actions as if ending the
screen recording session.

Expected Results: 1. Upon the user ending the recording session,
ScreenTracer initiates the video generation
and saving process automatically.

Test Data: Video content of various screen activities.

Table 5.1: ScreenTracer shall be able to automatically generate a video.

5.2. TEST CASE 25

Test Case Title: ScreenTracer Automated Storage of Video in
.AVI Format

Test Case ID: TC-002

Objective: To verify that ScreenTracer can automatically
store the video in the .AVI format upon the
user ending the screen recording.

Preconditions: 1. ScreenTracer application is installed and
functional.
2. User has initiated a screen recording
session.

Test Steps: 1. Start the screen recording using
ScreenTracer.
2. Simulate the user’s actions as if ending the
screen recording session.

Expected Results: 1. The generated video is automatically saved
in .AVI format in the specified directory or
default location.

Test Data: Video content of various screen activities.

Table 5.2: ScreenTracer shall be able to automatically store the video in
.AVI format.

26 CHAPTER 5. EVALUATION AND DISCUSSION

Test Case Title: Automatic Link Storage between Video Time
Periods and Gherkin Specifications

Test Case ID: TC-003

Objective: To verify that ScreenTracer automatically
stores a link between time periods of the
recorded video and their corresponding
Gherkin specifications in a WebVTT file.

Preconditions: 1. ScreenTracer application is installed and
functional.
2. Executable file under SpecFlow framework
is available.
3. User has initiated a screen recording
session.

Test Steps: 1. Start the screen recording using
ScreenTracer.
2. Simulate the user’s actions as if ending the
screen recording session.
3. Wait for the video generation and saving
process to complete.

Expected Results: 1. Time intervals and Gherkin specifications
are successfully stored in a WebVTT file.

Test Data: Test executable file under SpecFlow
framework.

Table 5.3: ScreenTracer shall be able to automatically store a link between
time periods of the video and the Gherkin specification in a file (e.g. json,
csv).

5.2. TEST CASE 27

Test Case Title: Display Gherkin Specification for Playing
Video in ScreenTracerViewer

Test Case ID: TC-004

Objective: To verify that ScreenTracerViewer provides
users with the ability to see the Gherkin
specification of a playing video.

Preconditions: 1. ScreenTracerViewer application is installed
and functional.
2. A valid video file is available.
3. A WebVTT file with the same name and
path as the video file is available.

Test Steps: 1. Launch the ScreenTracerViewer application.
2. Select a video file.
3. Start playing the selected video.

Expected Results: 1. During video playback, the Gherkin
specification of the playing video is displayed
in a designated area.

Test Data: A video file and a WebVTT file with the same
name and path as the video file.

Table 5.4: ScreenTracerViewer shall provide the user with the ability to also
see the Gherkin specification of this video (Gherkin specification uses the
Given-When-Then grammar to describe what is happening in the video).

28 CHAPTER 5. EVALUATION AND DISCUSSION

Figure 5.1: The Gherkin specification of the video

5.2. TEST CASE 29

Test Case Title: Play Multiple Videos under one view in
ScreenTracerViewer

Test Case ID: TC-005

Objective: To verify that ScreenTracerViewer allows users
to play multiple videos under one view.

Preconditions: 1. ScreenTracerViewer application is installed
and functional.
2. Multiple video files and corresponding
WebVTT files are available for testing.

Test Steps: 1. Launch the ScreenTracerViewer application.
2. Select multiple video files.
3. Click on tab-icons of the different videos
and play videos.

Expected Results: 1. Multiple Videos are played under the same
view.

Test Data: Multiple video files.

Table 5.5: ScreenTracerViewer shall provide the user with the ability to play
multiple videos under one view in ScreenTracerViewer.

30 CHAPTER 5. EVALUATION AND DISCUSSION

Figure 5.2: Multiple videos under one view

5.2. TEST CASE 31

Test Case Title: Select the video to play in ScreenTracerViewer

Test Case ID: TC-006

Objective: To verify that ScreenTracerViewer allows users
to select which video to play.

Preconditions: 1. ScreenTracerViewer application is installed
and functional.
2. Multiple video files and corresponding
WebVTT files are available for testing.

Test Steps: 1. Launch the ScreenTracerViewer application.
2. Select multiple video files.
3. Click on tab-icons of the different videos.

Expected Results: 1. When the user clicks on the tab, the video
within the view jumps to the video
corresponding to the tab.

Test Data: Multiple video files.

Table 5.6: ScreenTracerViewer shall provide the user with the ability to
select which video to play in ScreenTracerViewer.

32 CHAPTER 5. EVALUATION AND DISCUSSION

Test Case Title: Separate the Gherkin specifications by a
horizontal line in ScreenTracerViewer

Test Case ID: TC-007

Objective: To verify that ScreenTracerViewer separates
the Gherkin specifications of different videos
by a horizontal line.

Preconditions: 1. ScreenTracerViewer application is installed
and functional.
2. Multiple video files and corresponding
WebVTT files are available for testing.

Test Steps: 1. Launch the ScreenTracerViewer application.
2. Select multiple video files.

Expected Results: 1. The Gherkin specifications of all videos are
displayed in the designated area below the
video, and each video Gherkin specification is
separated by a horizontal line.

Test Data: Multiple video files.

Table 5.7: ScreenTracerViewer shall separate the Gherkin specifications of
different videos by a horizontal line.

5.2. TEST CASE 33

Test Case Title: Define Playback Order of Videos in
ScreenTracerViewer

Test Case ID: TC-008

Objective: To verify that ScreenTracerViewer allows users
to define the playback order of multiple video
files.

Preconditions: 1. ScreenTracerViewer application is installed
and functional.
2. Multiple video files are available for testing.

Test Steps: 1. Launch the ScreenTracerViewer application.
2. Select multiple video files.
3. Drag and drop tab-icons of the different
videos.

Expected Results: 1. The order of videos and tabs changes
according to the drag and drop of tabs.

Test Data: Multiple video files.

Table 5.8: ScreenTracerViewer shall provide the user with the ability to
define the playback order of videos.

34 CHAPTER 5. EVALUATION AND DISCUSSION

Figure 5.3: Define the playback order of videos

5.3 Test Results

After testing, this project has achieved the expected results for all test cases.
The only issue arose during the testing of TC-001 (Test Case ID) when
the user attempted to select a specific area on the screen for recording,
ScreenTracer exhibited instability. This instability is related to factors such
as computer configuration, codec settings, frame rate, and more, indicating
a need for further improvement. However, when the user recorded the entire
screen, ScreenTracer performed very stably and met the expected results of
TC-001. Since the requirements of the project were focused on recording
videos and automatically generating video files, without explicit demands
for allowing the user to select screen regions for recording, this project
still achieved the expected results for TC-001. This demonstrates that the
project has successfully passed all tests. The test video can be found on the

5.4. THE PRACTICAL USE OF SCREENTRACER AND SCREENTRACERVIEWER35

accompanying CD attached to this thesis.

5.4 The Practical Use of ScreenTracer and Screen-
TracerViewer

In this section, a highly realistic and concrete example will be presented to
elucidate how ScreenTracer and ScreenTracerViewer assist the development
team to work better. In this example, a software development company
has been tasked with developing an official website application for an
airline company. To ensure the website application aligns with the airline
requirements of company, the software company has assigned its product
manager to engage in meetings and discussions with the airline company,
their customer. The airline requirements of company include the ability
for users of the website to register as members, accumulate airline mileage
points, redeem points for rewards, purchase tickets, cancel tickets, and
check flight statuses and mileage points. The product manager conveys
these requirements to the Business Analyst (BA) through user stories.
Subsequently, the BA collaborates with the development team to analyze
these user stories and distill them into specific usage scenarios, all of which
are formatted using Gherkin syntax. For instance, for the scenario of a user
purchasing a ticket, according to Gherkin format:

(1.) Given: The user is logged into their account.
(2.) When: The user selects a ticket, enters information, and clicks

"Purchase."
(3.) Then: The website displays a successful ticket purchase message.
The development team proceeds to create the official website application

of the airline company based on these usage scenarios. Once the source
code is completed, they run it to launch the website application. Using
Selenium, the development team records interactions with the website
application, generating test code, and the test code is generated as an
executable file. Next, the development team employs ScreenTracer to
open the executable files. ScreenTracer records all interactions within the
executable files, video and webvtt files are automatically generated after
recording. At this point, the development team can hold meetings and
discussions with the product manager and the customer. The development
team uses ScreenTracerViewer to open the videos recorded by ScreenTracer.
In interface of ScreenTracerViewer, both the video and its associated
Gherkin specification are displayed. Product manager and customer can
simultaneously view the video and its corresponding Gherkin specification.
The video demonstrates various actions that can be performed on the
website, such as purchasing tickets and checking flight statuses, while
the Gherkin specification provides descriptions of these actions. Product
manager and customer can verify whether the website application meets

36 CHAPTER 5. EVALUATION AND DISCUSSION

all of requirements of the airline company. If errors or improvements are
needed, they can promptly provide feedback. The development team uses
this feedback to enhance the website application, ultimately delivering a
website application that fully aligns with the expectations of the airline
company.

5.4.1 The benefits of using ScreenTracer and ScreenTrac-
erViewer

From the example above, it is evident that ScreenTracer and ScreenTrac-
erViewer provide benefits to everyone involved in the software project devel-
opment process. For the development team, ScreenTracer and ScreenTrac-
erViewer serve as valuable tools to ensure that software requirements are not
overlooked and to prevent deviations from customer requirements that might
arise from interpretations of developers during the development process. For
the product manager and customer, ScreenTracer and ScreenTracerViewer
provide a more convenient and intuitive way to verify whether the product
meets customer requirements.

5.5 Software development process of BDD

The development process of the example presented in Section 5.4 follows
the principles of Behavior-Driven Development (BDD), with the integration
of ScreenTracer and ScreenTracerViewer. This section demonstrates the
software development process of BDD. The software development flow chart
of BDD can be seen in Figure5.4.

5.5. SOFTWARE DEVELOPMENT PROCESS OF BDD 37

Figure 5.4: Software development flow chart of BDD

BDD fosters close collaboration among all project members in software
development: product managers, business analysts (BAs), software devel-
opers, and testers. To initiate the process, (1.) the product manager
communicates the specific software product requirements to the Business
Analyst through user stories. The primary advantage of utilizing user stories
to outline software requirements at the outset of the project is that it avoids
the potential for misunderstandings regarding software requirements among

38 CHAPTER 5. EVALUATION AND DISCUSSION

team members, such as BAs, and minimizes subjective interpretations. Once
the business analyst comprehends the requirements of the software product,
(2.) both the business analyst and the development team (comprising
developers and testers) collaboratively analyze the user stories of the
product manager. They collaboratively outline specific usage scenarios
for the software product. These scenarios are described using structured,
natural language with keywords, such as Gherkin. Subsequently, (3.) the
development team leverages BDD tools to convert these scenario files into
executable automated test codes. The procedural details for this conversion
are expounded upon in Chapter 4, Section 4.3, Subsection 4.3.1, titled
"How to convert scenario files into test codes." Developers write software
code based on these usage scenarios and then execute the automated test
codes to verify whether the developed software aligns with the acceptance
criteria defined by the usage scenarios of the software product. Based
on the results of automated testing, (4.) testers can perform manual
testing and exploratory testing. Throughout the development process of the
project, (5.) product managers can view the real-time automated test results
produced by the software development team and the test reports generated
by BDD tools. This ensures that the software implementation aligns with
the specified software requirements. The aforementioned BDD development
process demonstrates how BDD enhances collaboration among all project
members. This collaborative approach empowers the development team to
create software products that better meet customer requirements.

5.6 Gherkin and Test Case

In Section 5.5, it is mentioned that usage scenarios in the BDD development
process are described using structured natural language Gherkin. This
section introduces Gherkin and illustrates why using Gherkin is more
convenient for testers in the development team, as compared to traditional
Test Case. To foster improved team collaboration and streamline software
development, structured natural language is employed for the articulation
of customer software requirements. Gherkin, among the various structured
languages utilized, emerges as a prominent choice. Gherkin is crafted to
be non-technical and easily readable and comprehensible by individuals,
regardless of their coding proficiency. It offers an effective means of
describing software use cases that can be grasped by every team member.
The typical syntax of Gherkin is Given-When-Then. Within this framework:

(1.) The Given step establishes the context or preconditions within the
system, often referencing past events or conditions.

(2.) The When step articulates the specific actions to be executed.
(3.) The Then step outlines the expected outcomes stemming from the

preceding actions, signifying the expected behavior or system state

5.6. GHERKIN AND TEST CASE 39

post-execution.

Incorporating Gherkin into the development process enhances clarity,
facilitates collaboration, and ensures the effective communication and
fulfillment of customer requirements. One sample of Gherkin can be found
in Figure5.5.

Figure 5.5: One sample of Gherkin

Test Case is a structured set of elements encompassing user inputs (in
the form of test data), execution conditions, and expected outcomes. It is
meticulously crafted to assess whether a specific software program aligns
with and fulfills the stipulated customer requirements. Test Cases serve as
a fundamental component of the software testing process, playing a pivotal
role in ensuring the software’s reliability, functionality, and compliance with
customer expectations. The comparison between Gherkin and Test Case can
be seen in Figure5.6.

40 CHAPTER 5. EVALUATION AND DISCUSSION

Figure 5.6: Gherkin and Test Case

The comparison chart highlights a one-to-one correspondence between
the structure of Gherkin and that of a Test Case. Both Gherkin and Test
Cases share a common composition, consisting of three key components:
context, action, and expected results. This is the reason why Gherkin is
more convenient for testers. Gherkin includes all the elements found in Test
Case, and furthermore, it is more concise, clear, intuitive, and easier to
understand.

5.7 The comparison between BDD- and traditional
software development process

In Section 5.4, the development process of the example follows the principles
of BDD, and Section 5.5 explains what BDD is.Then, this Section gives
the advantages of BDD by comparing BDD with the traditional software
development process. The traditional software development process can be
seen in Figure5.7.

5.7. THE COMPARISON BETWEEN BDD- AND TRADITIONAL SOFTWARE DEVELOPMENT PROCESS41

Figure 5.7: Traditional software development process

The initial stage of the traditional software development process involves
the product manager conveying the desired software product requirements to
software requirements analysts. Subsequently, these analysts document these
requirements and produce software product requirements specifications.
Based on these specifications, software developers proceed to write code and
perform unit testing. Software testers then analyze the testing requirements
as outlined in the software product requirements specifications, create test
cases (use cases), and employ these test cases to evaluate the software
products. Finally, the software development team generates functional and
technical description documents for the software product. This constitutes
the fundamental approach in traditional software development. However,
the traditional software development model has inherent issues. During
the transition from business and software requirements to coding, and

42 CHAPTER 5. EVALUATION AND DISCUSSION

onward to software testing, different roles and team members handle
the necessary information at different stages. This introduces numerous
opportunities for information loss, errors, or even the inadvertent neglect
of the original customer requirements. Any misstep in this process can
result in challenges for the software development team in delivering products
that align with customer expectations and deadlines. In contrast, Behavior
Driven Development (BDD) offers effective solutions to these issues. BDD,
an agile software development methodology, actively involves all members
of the development team, regardless of their technical or coding expertise.
Utilizing tools like Gherkin, automated test results, and automated test
reports, BDD enables team members to accurately comprehend customer
needs and continuously assess whether the software aligns with customer
requirements in real-time. This collaborative approach ultimately facilitates
the timely delivery of software products that meet customer expectations.
For a comprehensive overview of the BDD software development process,
please refer to Section 5.5, "Software development process of BDD."

Chapter 6

Conclusion

This chapter concludes the main task of this work and explains the
achievements and the end state of the task.

6.1 Conclusion

The main task is to implement more functionality for ScreenTracer and
ScreenTracerViewer to achieve more requirements of users. The main part
of this work is the development phase, in which all mandatory requirements
are implemented. Users can now store .avi format videos in specified
directory through ScreenTracer and select video files from local directory
through ScreenTracerViewer. Then, Users can see the Gherkin specification
of the video at the same time, while the video is playing. According to
the Gherkin specification, users can understand what is happening in the
video and verify if the software product meets their requirements. Using
ScreenTracer and ScreenTracerViewer in the software development process
is beneficial for all team members involved. For the development team,
ScreenTracer and ScreenTracerViewer are valuable tools for ensuring that
software requirements are not overlooked and for preventing deviations from
customer requirements that may occur due to interpretations of developers
during the development process, and for the product manager and customer,
ScreenTracer and ScreenTracerViewer offer a more convenient and intuitive
way of verifying whether the product aligns with customer requirements.
Implemented and how to implement requirements can be seen in chapter 4.

After the development phase, Test Cases were designed and planned to
evaluate if the software meets all mandatory requirements. Because most
of the requirements, tasks and achievements of this work are functional
implementations.

43

44 CHAPTER 6. CONCLUSION

6.2 Future Work

The current generation of test code using Selenium necessitates manual
operation by developers. In future development phases, this process will be
upgraded to be automated, while retaining the option for manual operation.

Appendix A

Appendix A

Contents of CD

Contents of the CD includes:

1. All source code under the branch "BA-new-driver"

2. Latex source code

3. The video of testing test cases

4. The bachelor thesis in digital form (.pdf)

45

46 APPENDIX A. APPENDIX A

Bibliography

[1] Mahmood Niazi, Sajjad Mahmood, Mohammad Alshayeb, Mo-
hammed Rehan Riaz, Kanaan Faisal, Narciso Cerpa, Siffat Ullah Khan,
and Ita Richardson. Challenges of project management in global software
development: A client-vendor analysis. Information and Software
Technology, 80:1–19, 2016.

[2] Ulrike Abelein and Barbara Paech. State of practice of user-developer
communication in large-scale it projects: Results of an expert interview
series. In Requirements Engineering: Foundation for Software Quality:
20th International Working Conference, REFSQ 2014, Essen, Germany,
April 7-10, 2014. Proceedings 20, pages 95–111. Springer, 2014.

[3] John Ferguson Smart and Jan Molak. BDD in Action: Behavior-driven
development for the whole software lifecycle. Simon and Schuster, 2023.

[4] Jianwei Shi, Jonas Mönnich, Jil Klünder, and Kurt Schneider. Using
gui test videos to obtain stakeholders’ feedback. In 2023 IEEE/ACM
International Conference on Software and System Processes (ICSSP),
pages 35–45. IEEE, 2023.

[5] Mika V Mäntylä, Juha Itkonen, and Joonas Iivonen. Who tested my
software? testing as an organizationally cross-cutting activity. Software
Quality Journal, 20:145–172, 2012.

[6] Marlen Stacey Chawani, Jens Kaasbøll, and Sisse Finken. Stakeholder
participation in the development of an electronic medical record system
in malawi. In Proceedings of the 13th Participatory Design Conference:
Research Papers-Volume 1, pages 71–80, 2014.

[7] Helge Holzmann. Videounterstützte ablaufverfolgung von tests für
anwendungen mit grafischer benutzeroberfläche. In Informatiktage, pages
83–86, 2012.

[8] Raphael Pham, Helge Holzmann, Kurt Schneider, and Christian
Brüggemann. Beyond plain video recording of gui tests: linking test
case instructions with visual response documentation. In 2012 7th

47

48 BIBLIOGRAPHY

International Workshop on Automation of Software Test (AST), pages
103–109. IEEE, 2012.

[9] Christine Rupp et al. Requirements-Engineering und-Management: Das
Handbuch für Anforderungen in jeder Situation. Carl Hanser Verlag
GmbH Co KG, 2020.

	Introduction
	Research Aims and Objectives
	Structure of the thesis

	Fundamentals
	Related Works
	Challenges of project management in global software development: A client-vendor analysis
	State of Practice of User-Developer Communication in Large-Scale IT Projects
	BDD in Action: Behavior-driven development for the whole software lifecycle
	Using GUI Test Videos to Obtain Stakeholders' Feedback
	Who tested my software? Testing as an organizationally cross-cutting activity
	Stakeholder participation in the development of an electronic medical record system in Malawi

	BDD: Behavior-Driven Development
	SharpAvi
	SpecFlow
	LivingDoc
	Selenium IDE
	ScreenTracer

	Requirements
	Design process
	Stakeholders
	Mandatory Requirements
	Optional Requirements

	Implementation
	R1: When the user ends the screen recording, ScreenTracer shall be able to generate a video and automatically store the video in .AVI format.
	R2: When the user ends the screen recording, ScreenTracer shall be able to automatically store a link between time periods of the video and the Gherkin specification in a file (e.g. json, csv).
	R3: When a video file is playing in ScreenTracerViewer, ScreenTracerViewer shall provide the user with the ability to also see the Gherkin specification of this video (Gherkin specification uses the Given-When-Then grammar to describe what is happening in the video).
	How to convert scenario files into test codes

	R4: When multiple video files are open in ScreenTracerViewer, ScreenTracerViewer shall separate the multiple videos by a thick vertical line in the progress bar and provide the user with the ability to play multiple videos under one view in ScreenTracerViewer.
	R5: When multiple video files are open in ScreenTracerViewer, ScreenTracerViewer shall provide the user with the ability to define the playback order of videos.

	Evaluation and Discussion
	Test Environment
	Test Case
	Test Results
	The Practical Use of ScreenTracer and ScreenTracerViewer
	The benefits of using ScreenTracer and ScreenTracerViewer

	Software development process of BDD
	Gherkin and Test Case
	The comparison between BDD- and traditional software development process

	Conclusion
	Conclusion
	Future Work

	Appendix A

