
Gottfried Wilhelm
Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik
Institut für Praktische Informatik
Fachgebiet Software Engineering

Further development of a Web
Application based on Principles of

Software Engineering

Bachelor Thesis

in Computer Science

by

Dinh Minh Nguyen

First Examiner: Prof. Dr. rer. nat. Kurt
Schneider

Second Examiner: Dr. rer. nat. Jil Ann-Christin
Klünder

Supervisor: M. Sc. Jianwei Shi

Hannover, 22 August 2022

ii

Erklärung der
Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Bachelor Thesis selbständig
und ohne fremde Hilfe verfasst und keine anderen als die in der Arbeit
angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit hat in
gleicher oder ähnlicher Form noch keinem anderen Prüfungsamt vorgelegen.

Hannover, den 22 August 2022

Dinh Minh Nguyen

iii

iv

Zusammenfassung

SynchroPC ist eine Webanwendung, die entwickelt wurde, um effiziente
Agenden für wissenschaftliche Programmausschüsse zu erstellen. Der
Algorithmus, der zum Erstellen von Agenden verwendet wurde, funktioniert
jedoch nicht optimal und ist für die meisten Benutzer schwer zu verstehen.
AuSSerdem gibt es Schwachstellen im System, die behoben werden müssen,
und neue Anforderungen kommen von den Kunden. Ziel dieser Arbeit ist
es, die Webanwendung weiterzuentwickeln, um den Algorithmus erklärbarer
zu machen, die noch im System vorhandenen Fehler zu beheben und neue
Funktionen hinzuzufügen, um die Qualität des Systems zu verbessern.
Um dieses Ziel zu erreichen, werden Django- und Boostrap-Frameworks
zusammen mit der jQuery-Bibliothek verwendet, um die Anwendung weit-
erzuentwickeln. Die verbesserte Version von SynchroPC bietet einen neuen
Algorithmus zum Erstellen von Agenden, der einfacher zu verstehen ist
und bessere Agenden erstellt, sowie neue Tools, um die Verwendung von
SynchroPC flexibler und komfortabler zu gestalten.
Um die Qualität des neuen Algorithmus zu testen, wurden eine Reihe von
Tests durchgeführt, um die Ergebnisse des alten und des neuen Algorithmus
zu vergleichen. Die Ergebnisse der Prüfungen werden protokolliert und
ausgewertet.

v

vi

Abstract

SynchroPC is a web application developed to create efficient agendas for
scientific program committees. However, the algorithm that has been used
to create agendas is not working optimally and is hard to understand for
most users. There are also flaws in the system that need to be resolved, and
new requirements are coming up from the customers. This thesis aims to
develop the web application further to make the algorithm more explainable,
fix the errors that are still in the system and add new features to improve
the system’s quality.
To achieve this goal, Django and Boostrap frameworks, along with the
jQuery library, are used to develop the application further. The improved
version of SynchroPC provides a new algorithm for creating agendas, which
is easier to understand and create better agendas, and new tools to make
the usage of SynchroPC more flexible and comfortable.
In order to test the quality of the new algorithm, a number of tests have
been conducted to compare the results from the old and new algorithms.
The results from the tests are recorded and evaluated.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals Definition . 1
1.3 Structure of the Thesis . 2

2 Fundamentals 3
2.1 synchroPC . 3
2.2 Principles of Software Engineering 3

2.2.1 Working systematically 4
2.2.2 Take requirements into account effectively 5
2.2.3 Programming understandably 7
2.2.4 Uphold Testing and Quality 8

3 Requirements 11
3.1 Functional Requirements . 11
3.2 Non-functional Requirements 12

4 Implementation 15
4.1 Workflow . 15
4.2 The Magic Algorithm . 18

4.2.1 How it works . 18
4.2.2 Problems in the algorithm 20

4.3 New Features and Changes 30
4.3.1 Reschedule suspended papers 30
4.3.2 Hide and Show Agenda 30
4.3.3 Undo agenda editing 30
4.3.4 Change the decision for a paper 30
4.3.5 Add filter to reject weak account’s password 31
4.3.6 New Unit Test cases for the Magic Algorithm 31
4.3.7 Minor changes . 31

5 Evaluation 33
5.1 The Evaluation of Magic Algorithm 33

5.1.1 Test Planning and Design 33

ix

x CONTENTS

5.1.2 Result and Analysis 35
5.2 Discussion . 37

5.2.1 The lack of comments in code, PEP-8’s Usage and
Python code linters . 37

5.2.2 Run time of the new Magic Algorithm 37
5.2.3 Magic Algorithm Optimization 38
5.2.4 Further Improvements in Front-end 38

6 Conclusion 39
6.1 Summary . 39
6.2 Outlook . 40

A Evaluation Data 41
A.1 Test setup and input . 41
A.2 Agenda items with invalid duration or start time 42
A.3 Agenda items, in which all reviewers can join 42
A.4 Agenda items, in which all reviewers can join 44

B Contents of the CD 45

Chapter 1

Introduction

1.1 Motivation

The peer review process plays a pivotal role in the world of researchers and
scholarly publishing. According to Kathryn S McKinley [1], peer reviewing
seeks to evaluate research using qualified experts, who have the scientific
training, experience, and skills to judge the merit of the work - they are
also known as program committees. However, many program committee
meetings are unproductive and a waste of time. In reality, holding a practical
and purposeful meeting can be pretty challenging, and many problems can
occur in the process. That is why meetings must be well planned and
appropriately chaired.
SynchroPC is a web application developed to create an influential agenda for
program committees, synchronize individual agendas, and create a meeting
environment for all participants worldwide. This web application’s simple
yet effective workflow is the key that led to its success at the International
IEEE Conference on Requirements Engineering. However, it was developed
quickly, so problems still lie within it. Along with new requirements, there
is much work to bring this web application to its fullest potential.

1.2 Goals Definition

This thesis aims to improve synchroPC further based on the principles of
Software Engineering. During the development process, the algorithm used
to create the agenda is optimized and more understandable so that users can
create agendas without difficulties and misunderstandings. Furthermore,
new front-end functionalities for account activation and administration are
also being considered to enhance user experience with these processes. Along
with improvements to ready-to-use features, new Security and Usability
requirements are also identified and collected using Requirement Engineering
before they are implemented and migrated into the web application.

1

2 CHAPTER 1. INTRODUCTION

Throughout this thesis, the Principles of Software Engineering should be
strictly followed. Requirement Engineering is used to collect stakeholders’
requirements, ensuring that solutions to every problem are reasonable,
complete, and practical. The whole project is managed using agile practices
to guarantee the quality of work and end product with time-effectiveness.
Testing is also developed as an essential part of development, ensuring that
every step of development is in the correct direction and estimating the
project’s progress. The result of this thesis will be evaluated carefully using
acceptance tests, which are discussed at the beginning of the project. The
implementation chapter will elaborate on the details of how these principles
are applied.

1.3 Structure of the Thesis
The content of the thesis is structured as follows. In this first chapter of the
thesis, motivation and goals are discussed, as well as the structure. Chapter
2 defines the fundamentals of the principles of Software Engineering that
were used to achieve the goals of this thesis and also provides necessary
knowledge of additional concepts and tools. Essential requirements are
described in the third chapter, as well as the stakeholders of this product.
Chapter 4 goes into details about the further implementation of the web
application on the back-end and front-end, as well as the testing process.
Chapter 5 focuses on the process and results of the evaluation for this
web application, ensuring that this project’s goals are fulfilled. Finally,
chapter 6 summarizes and concludes the thesis and mentions some ideas
and improvements for the future development of the web application.

Chapter 2

Fundamentals

In this chapter, the fundamental knowledge required for the further
development of this project is declared. Section 2.1 goes into a rough
description of synchroPC and what it does. Section 2.2 presents what agenda
is and its role in synchroPC. Section 2.3 discusses the Principles of Software
Engineering and their practices. Furthermore, finally, the library and tools
used during the development are introduced in the last subsection of this
chapter.

2.1 synchroPC

synchroPC is a software solution developed to hold program committee
meetings at international conferences. Its primary function is to create an
agenda that all conference members can follow to evaluate scientific papers
effectively and deliver accurate decisions about these papers, whether they
are accepted, rejected, or suspended. Information from EasyChair, a free
web-based conference management software system used, is also importable
to the web application. Users can work right away without importing it one
by one manually.
This web application has three prominent user roles: PC-Chair, Member,
Conflict of Interest - COI. PC-Chair is the person who holds and has the
highest control over a conference. As a PCChair, a user can invite another
E-Mails member to participate in the already created agenda. However, if
a member is involved as a COI, this user will not be allowed to evaluate
that paper. After the discussion, a PC-Chair can mark a paper as accepted,
rejected, or suspended and move on to the following paper.

2.2 Principles of Software Engineering

According to Schneider [2], the Principles of Software Engineering are
the principles that should be implemented by both traditional and agile

3

4 CHAPTER 2. FUNDAMENTALS

development approaches. As a part of this projects requirement, agile
methods are applied to this project. Therefore, the Principles of Software
Engineering are implemented using best practices for the agile development
process. This section is focused on principles and practices that are essential
and used for the project.

2.2.1 Working systematically

When it comes to a professional software project, everything needs to be
prepared beforehand. Any software system is created using entities and
relationships, and these parts and their dependencies must be discussed
before implementing the desired system.

Incremental Development Model

The Incremental Development Model is fitted perfectly with our project,
as requirements tend to change during development time. Over the
traditional waterfall model, the cost of modifications is significantly reduced.
Moreover, the product can be gradually developed and deployed, facilitating
regular customer feedback. This way, customers and the development
team can easily track the progress of the whole project so that they can
make adjustments or improvements in the next increment. Despite some
disadvantages from the managing perspective, such as invisible progress or
degraded system structure, the Incremental Development Model is still a
great fit, especially for this small project.

Agile Software Development

As mentioned in Chapter 1, there is much work to bring this web application
to its fullest potential. However, the further development of the web
application is in a short period, which is four months. That means people
should spend more time on this project, primarily developing and testing. In
addition, it is expected that customer requirements will change in the future.
Even for customers, actual requirements are sometimes unclear until they
develop experience with the system. Further development process should
also embrace these changes in the near future. In order to deal with these
challenges, agile methods are applied to the project.
According to Sommerville [3], agile methods are incremental development
methods in which the increments are small, and typically, new releases of
the system are created and made available to customers every two or three
weeks. Based on the Manifesto for Agile Software Development [4],agile
methods have become popular due to their advantages over traditional, plan-
based development models. They allow the software to be delivered quickly,
make it easier to adapt to changes and avoid unnecessary bureaucracy
by using informal communications. In addition, customers are closely

2.2. PRINCIPLES OF SOFTWARE ENGINEERING 5

involved in the development process, and consequently, the system can
be evaluated frequently during each iteration. With those benefits, agile
methods have been particularly successful for custom system development
within an organization, where there is a clear commitment from the customer
to become involved in the development process and where there are few
external stakeholders and regulations that affect the software, as stated by
Sommerville [3].

Extreme Programming

There are many practices that were built from agile methods, but the most
effective practices that are implemented in this project is a set of Extreme
Programming practices. According to Beck [5], the approach was developed
by pushing recognized good practices, such as iterative development, to
extreme levels. However, not all of the practices can be used. These
must be applied based on the suitability of management practices and
the development team’s culture. In conformity with the project, several
Extreme Programming practices are listed and explained below in Figure
2.1, according to Sommerville [3]:

Figure 2.1: Some of the Extreme programming practices

2.2.2 Take requirements into account effectively

The idea of how a system works and controlled is described through
requirements. This is the reason why requirements have to be collected as

6 CHAPTER 2. FUNDAMENTALS

the first step of development process using Requirements Engineering
technique. According to Metzner and Verlag [6], in requirements engineering
are software’s requirements determined, analyzed, described and modeled
as technical solution. It is an iterative process that interleaves with
each increments of development process. The components of requirements
engineering and their dependencies are described in Figure 2.2, as presented
by Sommerville [3].

Figure 2.2: A sprial view of the requirements engineering process

Requirements Engineering consists of five stages, which are: Elicitation,
Interpretation, Negotiation, Documentation, and Validation/Verification.

• Elicitation
In the requirements elicitation, customer’s requirements will be gath-
ered through communications between software engineers and stake-
holders in the requirements elicitation. Firstly, stakeholders must be
identified as individuals, groups, companies, or associations impacted
by the software project results. Next, the system’s environment should
be examined, consisting of old systems, interfaces, or documentation.
Last but not least, communication between interested parties through

2.2. PRINCIPLES OF SOFTWARE ENGINEERING 7

interviews, workshops, or surveys is established in order to obtain
requirements. Moreover, finally, the collected requirements are refined
into more technical and understandable requirements, which will be
used in the next step.

• Interpretation
From elicitation stage, the refined requirements are interpreted,
sorted, and ordered from the elicitation stage based on category and
their significance to the project. Afterward, they are detailed and
concretized into formal requirements.

• Negotiation
Using formal requirements, dependencies and conflicts between re-
quirements are addressed. Inconsistencies are taken into account, and
the solutions to them are discussed to find a compromise that pleases
all parties involved in the software project.

• Documentation
According to Sommerville [3], requirements documents are essential
when systems are outsourced for development, when different teams
develop different parts of the system, and when a detailed analysis of
the requirements is mandatory. The software requirements gathered
from the previous step should be fixed in formal documentation,
which can be used by both customers and developers of the system.
However, it is essential to note that requirements can be changed
during the software development process, and these changes should
also be provided in the documentation.

• Validation/Verification
Validation and Verification are the last steps of the requirement
engineering process. Both of them are especially important in
order to prevent extensive rework and retest costs in the future.
Requirement Validation checks if the provided requirements are what
the stakeholders want from the software. On the other hand,
Requirement Verification is the process of checking if the software
requirements are matched with the required documentation in the
previous step.

2.2.3 Programming understandably

Understandability is essential for changing, maintaining, and further devel-
oping software. Along with new requirements, new codes are also added
to the system, which degrades the software structure over time. That
leads to the fact that changing, maintaining, and further developing will
become more expensive. For that reason, good code understandability will

8 CHAPTER 2. FUNDAMENTALS

make it much easier to work with the system and prevent errors during the
development process.
In order to adopt this principle, Code and Commit Conventions are applied
in the whole project. The Implementation chapter will discuss how these
concepts are applied and implemented.

2.2.4 Uphold Testing and Quality

Developers always want that their software works as expected. Nevertheless,
in reality, this is not always the case. People make mistakes, and developers
are also people - they are good in their expertise but not perfect. Even when
the software works, we can only say it works at one point. Moreover, is a
working software good enough? According to Ousterhout [7], if development
only focuses on getting the software working as quickly as possible, it is
inevitable that it lacks a good vision for the future. As a result, adding
more codes in the future will increase the system’s complexity and raise the
cost of the development process. These are the reasons why software quality
should always be taken into account for any software project. This section
will discuss essential techniques that are utilized to uphold the quality of
this project.

Quality Model

In order to evaluate quality of a software project, the quality model proves
to be useful. Based on ISO/IEC 25010 [8], there are, in total, eight quality
characteristics in the general quality model, which is used when evaluating
the properties of a software product. They are as described in Figure 2.3.

Figure 2.3: The eight aspects of Software Quality

However, it depends on the customers and which aspects are essential for
the product. Therefore, not all of the characteristics are used to construct
the quality model for this project, as some are either not required by the
customers or may conflict with other aspects, which are more important to
consider. In this project’s scope, the following quality characteristics are put
into practice, with the importance in listed order: Security and Usability.

2.2. PRINCIPLES OF SOFTWARE ENGINEERING 9

• Security
According to ISO/IEC 25010 [8], Security is the degree to which a
product or system protects information and data so that persons or
other products or systems have the degree of data access appropriate
to their types and levels of authorization. As much information about
the program committee and scientific research is kept in our system,
and the web application must be secured to guarantee the integrity of
the paper evaluation process and protect personal information.
System vulnerabilities may arise because of requirements, design, or
implementation problems, or they may stem from human, social, or
organizational failings, based on Sommerville [3].
The Requirement and Implementation section will discuss how this
characteristic is enforced.

• Usability
Usability refers to the satisfaction degree when a specified user uses
the product to achieve their goals. The software has good usability
when users are appeased with the effectiveness and efficiency which
they experience. It is typically an important goal of quality, and
there are a lot of tools, libraries, and frameworks that have been
developed in order to achieve that goal. However, getting lost in
technical possibilities is easy, and people forget what the application
was intended for. In order to avoid that, fundamental knowledge about
users and their tasks must be taken seriously. According to Schneider
[9], the following quality aspects are distinguished for the adaptation
of software to humans:

– Utility
First of all, the required function must have existed in the
software. Which functionalities should be available for each type
of user must be found out during the requirement engineering
process. Otherwise, the application will not help its users much
with their tasks.

– Correctness
An application should not just provide functionalities, all of them
must also work as expected.

– Usability
It is the degree of how useful and corrects the provided functions
are in reality to its users, and this aspect is more critical than
Utility and Correctness.

Utility and Usability are sometimes contradictory: a simple appli-
cation can be helpful but will not help much. On the other hand,
complicated software can provide all the users need, but such a

10 CHAPTER 2. FUNDAMENTALS

complicated is more challenging for its users to learn and operate by
themself. In this project, the application should provide only essential
functionalities so users will not feel overwhelmed.

Testing

he quality of a software product cannot be kept over time without a good set
of test cases. According to Spillner and Linz [10], testing is the program’s
execution to prove the effect of errors, determine the current quality degree,
increase trust in the program, and prevent the cost of error in the future.
In the scope of this project, Unit-Testing has been used in order to uphold
the quality of the system.
According to Schneider [9], a Unit Test is characterized by the level in the
system hierarchy. Modules are tested; the modules or units are usually
classes or simple packages in object-oriented languages. Integration and
system tests do not fall into this category. Testing should be done from
the bottom up. Modules should be thoroughly tested before they are put
together in the system structure, and the integration and system test begins.
All module tests must run correctly before the modules are integrated,
but that does not mean that about 100% statement coverage or perfect
requirement coverage would be achieved.
Along with Unit-Testing, several tests are designed to test the quality of the
Magic Algorithm. In Chapter 5, the details of the tests and its result will
be discussed.

Chapter 3

Requirements

In this chapter, requirements which need to be fulfilled are taken into
account. In sections 3.1 and 3.2, all functional and non-functional
requirements taken during the development process are listed and briefly
explained.

3.1 Functional Requirements

• [R01] The web application should be further developed using Django,
along with jQuery and Boostraps
With built-in administration and protection for common security
issues, Django is a perfect framework for this project. With two
powerful Javascript-Framework, Django enables rapid development
with a feature-rich user interface.

• [R02] The algorithm for creating agenda should be refined and
configured so that it is clear and understandable for all users
The algorithm for creating agenda is complex and still has flaws, which
leaves much space for improvement.

• [R03] Front-end functions for account activation and administration
should be modified or implemented
The design of the web pages for account activation and administration
still has some problems. In order to increase user experience, these
problems have to be removed.

• [R04] PC-Chairs should be able to make agenda public or private, in
order to prepare the agenda efficiently
Currently, all users can see an agenda once a PC-Chair creates it.
This initialled agenda is not yet edited by the PC-Chair and requires
more work before it can be published. All members must only see the
agenda once it is ready.

11

12 CHAPTER 3. REQUIREMENTS

• [R05] PC-Chairs should be able to undo their agenda editing
Although the agenda can be easily edited using drag and drop, it is
possible to make mistakes while editing. In order to prevent that, undo
feature should be available for all PC-Chairs.

• [R06] PC-Chairs should be able to change agenda decision
After an agenda is discussed and decisions are made, there is no
turning back. PC-Chairs may click on the wrong decision, which
should possibly be corrected.

• [R07] PC-Chairs should be able to reschedule suspended paper and all
members see it on status page
A discussion of a paper can be suspended by PC-Chairs, in order
to discuss it at a better time. They should be able to resume the
discussion by the time they decide.

3.2 Non-functional Requirements

• [NR01] The Principle of Software Engineering should be endorsed
over the project
Every step and every process in the project should be strictly followed
planed and principles.

• [NR02] Agile Practices should be applied during the development
process
The Agile Method is the most popular in the software engineering
world. It suits the best for this project, as requirements can be changed
during the development process.

• [NR03] The application should have a secured authentication system
With Django Framework, security authentication should be enabled.

• [NR04] The system should provide accessibility and visibility based on
the role of the user that is using it
In order to keep transparent of the paper evaluation process, important
information should only be visible to authenticated users of the system

3.2. NON-FUNCTIONAL REQUIREMENTS 13

Figure 3.1: A part of the Trello Board that contains all tickets for SynchroPC
project

14 CHAPTER 3. REQUIREMENTS

Chapter 4

Implementation

In this chapter, the detailed implementation of the web application is
discussed. Section 4.1 briefly explains how the web application works.
Section 4.2 describes the back-end of the web application. After that,
the front-end improvements will be considered in section 4.3. Following
that, section 4.4 describes the testing process. Furthermore, finally, some
consideration thoughts about the results and feedback are clarified in section
4.5.

4.1 Workflow
This web application has three types of users: PC-Chairs, PC-Members,
and Conflict of Interest, also known as CoI.

• PC-Chairs
A PC-Chair is a leader of the program committee, and he has to
effectively plan an agenda and send it out to other members of the
committee in sufficient time so that all members of the program
committee can attend the meeting thoughtfully. He is also the want
who moderates the whole meeting and represents the committee in
deciding whether a paper will be accepted, rejected, or suspended.

• PC-Members
A PC-Member is a part of the program committee, and he takes part
in the meeting, along with other members, to discuss the fate of a
paper. However, it is not a particular members right to decide but the
PC-Chairs.

• CoIs
A CoI is also a PC-Member, but he is involved in one or more
papers that will be discussed in the meeting. That is why he can
not participate in the evaluation process of a paper he is involved in,
as his opinions can be biased.

15

16 CHAPTER 4. IMPLEMENTATION

In the beginning, a PC-Chair, who is authenticated in the system and
verified by an admin of the system, wants to host a program committee.
In order to do that, he can invite other PC-Members, using their E-Mail
adresses to create user accounts for them and links to reset passwords so
that they can use their accounts privately. After that, he sends the reset
password links to the interested PC-Members so that they can log in to
the web application. Alternatively, he can import data directly from the
easyChair web application and use the imported E-Mail-Addresses to create
a reset passwords link. For the papers that will be discussed, PC-Chair can
add them manually or import them from easyChair. After the accounts and
papers are ready, he can create an agenda based on that. The agenda is
created using an algorithm from the web application, and other members
can also see it. Next, the PC-Chair will edit the agenda to pass to others’
schedules. After finishing the editing, he can start to moderate the meeting
by discussing the first paper on the agenda. During this process, he can
extend the discussion time, decide the paper’s fate and move on to the
following paper. He can also provide public notification and online meeting
links so that others can see what he has to say or where they can take
part in the meeting online. The current state of the meeting is visible to
other PC-Members and PC-Chairs. PC-Members, however, are not allowed
to see PC-Chairs’ decisions. After going through discussions of all papers,
all program committee members can log out and log in in the future when
another meeting is hosted. The sequence of actions before, during, and after
each session of synchroPC based on roles is shown in Figures 4.1 and 4.2.

4.1. WORKFLOW 17

Figure 4.1: Sequence Diagrams - Before Meeting

18 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Sequence Diagrams - During and After Meeting

4.2 The Magic Algorithm
This section describes the implementation of an algorithm used to create
an agenda and its problems and explains the improving approaches and
methods.

4.2.1 How it works

Creating an agenda is the most critical feature of synchroPC. In order to
create an agenda, every participant in the program committee’s available
time must be considered. In the case of synchroPC, the participants can
be all around the world, which makes the differences in time between
participants vary. The ultimate goal is to generate an agenda for reviewing

4.2. THE MAGIC ALGORITHM 19

the scientific papers of choice so that most of the program committee can
participate in a fixed range of time.
In order to archive that goal, the current synchroPC has offered an
algorithm based on the Greedy Algorithm. The core idea of this algorithm
is to sort and arrange the schedule for reviewing paper submissions
according to the time zones of eastern-most reviewers and try to configure
it later to handle the meeting time for western-most reviewers. Along
with the main algorithm, synchroPC also provides an effective tool to edit
the agenda and a scoring system for exceptional cases which are hard or
impossible for the main algorithm to handle.
As inputs, the algorithm gets all the agenda configurations, such as the
paper submissions that will be discussed, the date and time interval that
the meeting can take place, the default discussion time, and the number
of PC-Chairs for each submission. Before attempting to create an agenda,
all of these data will be checked for validation. The data from paper
submissions and reviewers can be imported from an excel file, which can
be exported from the easyChair Website. Each paper must have at least
one reviewer, and also there must be at least one paper submission for the
algorithm to work with.
Once the inputs are checked, each selected submission’s algorithm will be
executed. First of all, the algorithm collects time zone information of all
reviewers, and then it calculates the western-most time zone, eastern-most
time zone, and the difference between them and the average time zone.
Based on those data, the best-suited PC-Chair will be picked and added to
the list of reviewers. If the difference in time between reviewers who have
the western-most and eastern-most time zones is too big, the submission
will be marked as “failed”. It will still be added to the agenda, but it will
not be prioritized as all reviewers cannot take part unless the range of time
for discussion increases. Otherwise, the submission will be marked as an
“okay” submission, sorted based on the minimum time zone of its reviewers,
and ready for scheduling. After that, the algorithm tries to schedule all OK
submissions on the first meeting day based on the agenda configuration.
For each “okay” a scoring system will be used to evaluate the quality of
created agenda. This system has two types of scores: Local Score and
Possible Score. The local Score is the Score of the current agenda item,
and the Possible Score is the maximal Score that the agenda item can have.
The higher the Local Score is, the more optimal is an agenda, but it should
not exceed the Possible Score. The scoring system is based on the number
of reviewers, which includes normal PC-Members and picked PC-Chairs,
who have local time between the start and the end of the meeting day.
There are three options for picking PC-Chairs: “None”, “At least one” and
“All Chairs”. With the “None” and “All Chairs” options, no or all available
PC-Chairs will be picked. For the “At least one” option, the PC-Chair for
each submission will be chosen based on time zone: the algorithm will pick

20 CHAPTER 4. IMPLEMENTATION

the PC-Chair with the time zone as close as the average time zone of all
reviewers. Each reviewer with an acceptable meeting time equals one unit
in Local Score. A possible Score is a Score for the best case scenario, where
all reviewers have sufficient meeting times.
After the local agenda is calculated, the algorithm will try to add a break
before the currently scheduled submission to increase the Local Score of
that submission. By adding pauses between discussed submissions, the
discussions start time for the western-most reviewers will not be too early
so that they can join the meeting in the configured time frame. Both
Local Score and Possible Score will be recalculated to ensure that adding
a break indeed improves Local Score. If the time slot for that paper after
adding a break is acceptable, the agenda will be saved to the database,
or else it will be scheduled later on other days. Day 3, or Overflow day,
is the last day a submission can be scheduled. If there is insufficient
time for all the OK submissions, the rest will be arranged for a second
meeting day, using the same algorithm as the first day. After that, if
there are still unscheduled submissions, they will be marked as failed and
added to the database. All failed submissions will also be scheduled on day 3.

4.2.2 Problems in the algorithm

The algorithm is working, but many logic and implementation issues need
attention and improvements. Also, the algorithm does not handle well in
some complicated cases. All of these problems are summarized as follows.
First of all, critical problems should be detected and resolved. There are
four main problems, which are:

• The function for evaluating new agenda score is not correct
As explained in the previous section, the scores are recalculated every
time the algorithm adds a break before an agenda item. The new
Local Score must be compared with the old one to guarantee that the
new start time of the agenda item is better than before. However,
the current compare function only compares the old local score with
0, which is not logically strict enough in this case. The code block
below shows how this function is implemented before improvements.

1 def is_schedule_acceptable (agenda_score_info):
2 acceptable = 0
3 for reviewer in agenda_score_info . member_times :
4 if reviewer .score > 0:
5 acceptable = acceptable + 1
6 return acceptable > 0

Listing 4.1: The agenda score compare function

4.2. THE MAGIC ALGORITHM 21

• The Push-back strategy is not a good solution to optimize the scores
of an agenda
In order to improve the Local Score of one agenda item, the algorithm
adds a broken item before it without considering the Local Score
of the other items behind it. Furthermore, the algorithm sorts all
submissions in a way, so submissions with a smaller minimum time
zone of its reviewers will be scheduled first. The submissions are
sorted without considering the distance between the maximum and
minimum time zone, which is an essential criterion for scheduling a
submission.
This approach leads to two problems. First of all, the Local Score for
items at the beginning of the agenda looks “perfect” and the Local
Score of the items is much worse at the end. Secondly, the time of
break item before one agenda item can be so big that it can fit one or
more other agenda items.
Figure 4.3 shows an example of an agenda with a long break. To make
all reviewers for paper 18 able to join the discussion, the algorithm
delayed the start time for this discussion by 120 minutes.

1 def apply_push_back_strategy (agenda_score_info , day_start ,
2 time_slot , agenda_item , is_first):
3 return_items = []
4

5 max_difference = timedelta (minutes =0)
6 for reviewer in agenda_score_info [1]:
7 difference = day_start . replace (tzinfo =None)
8 - reviewer . local_time . replace (tzinfo =None)
9 max_difference = max(difference , max_difference)

10

11 if max_difference > timedelta (minutes =0):
12 if not is_first :
13 break_item = Agenda (
14 submission =None ,
15 timestart =time_slot ,
16 duration = max_difference
17)
18 return_items . append (break_item)
19 moved_item = Agenda .copy(agenda_item)
20 moved_item . timestart = time_slot + max_difference
21 return_items . append (moved_item)
22 else:
23 return_items . append (agenda_item)
24

25 return return_items

Listing 4.2: The Push-back Strategy

22 CHAPTER 4. IMPLEMENTATION

Figure 4.3: An agenda that has an item with a 120-Minutes-
Break.

• The problem with PC-Chairs and their time zones
In the algorithm, the number of PC-Chairs for each submission can be
zero, one or all PC-Chairs. In the case of one PC-Chair, the algorithm
will pick the best PC-Chair, whose time zone has the least distance
from the average time zones of all reviewers. It guarantees that the
picked PC-Chair is closed to other members of the program committee
and hence, increases the agenda scores overall. However, two Chairs
will be picked in the case of all PC-Chairs, which makes the Local
Score look worse, especially if the Chairs are far from each other.

• Agenda items with invalid discussion time or start time
If the start and end time of the meeting is too close to each other,
and there is not enough time to discuss every paper, the algorithm
should not create any agenda and suggests that the PC-Chair should
increase the discussion time for the agenda. Before improvements, the
algorithm can generate an agenda with zero minute discussion time,
and more than one agenda items have the same start timem, which
should not happen. In this case, some of the submissions should be
pushed to the other days, Day 2 and Overflow Day, and the discussion
time should remain non-zero.
The problem with invalid time leads to another problem, that agenda
score is not always accurate. The reason is, that the Local Score from
submissions with zero minute discussion time should not be included

4.2. THE MAGIC ALGORITHM 23

at all as they are invalid
Figure 4.4 shows what agenda items with invalid start times look
like. The algorithm schedules for discussion at night time, even when
PC-Chair already specified the discussion end time of the day.
Figure 4.5 shows an example of agenda items with invalid discussion
time. Four agenda items have the same start time, at 10 o’clock, and
the discussion time is zero.

Figure 4.4: An agenda with night time items

24 CHAPTER 4. IMPLEMENTATION

Figure 4.5: An agenda with 0-Minute-Discussion-Time items

Beside the major problems, there are also some smaller problems that are
relevant to the Algorithm:

• Problems of the Unit Tests
Some of the old Unit Tests for the Magic Algorithm are not working.
Moreover, the new Magic Algorithm should also be tested to guarantee
that it works and, in most cases, is better than the old one. For that
reason, more Unit Tests for Magic Algorithm should be created.

• The scoring function uses the scores from invalid agenda items
Every agenda item that lies outside the start and end time or has zero
discussion time should not be considered, and their score should not
be used to calculate the overall agenda scores. This problem can be
improved by adding more conditions to check for the calculate score
function.

Improvements

The nature of the Magic Algorithm is Greedy Algorithm: it builds the
agenda by adding submissions one by one and guarantees that the time
slot for each added submission is optimal. With this approach, the time
complexity is typically tiny, and it is also easy to implement. However, this
approach can only find the optimal local solution, which is not always the
optimal global one. On the other hand, finding an optimal schedule will
cost a lot of time and memory, which is not a good idea when the number of
submissions is considerable. For this reason, a better approach to improve
the Magic Algorithm is to optimize the old Magic Algorithm to reach a

4.2. THE MAGIC ALGORITHM 25

better local optimal solution that is as close to the optimal global one as
possible. Instead of using a new algorithm, the Magic Algorithm is kept
“greedy” with some modifications. That way, the new Magic Algorithm is
still fast and creates better agendas, which are as close as possible to the
optimal agendas. The improvements in the new Magic Algorithm are listed
as follows:

• Remove the Push-back Strategy
Push-Back Strategy can only guarantee to improve the Local Score
of one submission. As explained above, it does not care about the
submissions below the one it pushes back, so it will not know if it
makes the total sum of all Local Score looks worse or better. This
strategy is unreliable enough to be used and will be replaced with
another approach. The new Algorithm will instead divide the time
interval between start and end time into time slots. Each time slot
has a duration equal to the default duration that has been set in the
Agenda’s Configuration. It will then try to schedule discussions into
these time slots.

• Change the method for choosing submission to schedule
As explained above, the order of okay submissions will decide the
order of the whole agenda. It is why ordering is critical, and ordering
submissions using only the minimum time zone of its reviewers is not
enough. The difference between its reviewers’ minimum and maximum
time zone also plays a vital role, as it decides how many time slots the
submission can be placed on the agenda. The more significant the
difference is, the fewer time slots that can satisfy all reviewers.
Before choosing the next submission to be scheduled, the new
algorithm will sort all submissions into two dictionaries for Okay
and Bad Submissions, which are for submissions that are possible
or impossible for every reviewer to discuss simultaneously. For both
dictionaries, the key is the minimum time zone, and the value is a list
of tuple from the submission instance and the difference between the
minimum and maximum time zone of a submissions reviewers.
After creating the dictionaries for Okay and Bad Submissions, the
Algorithm will try to pick one submission using the following strategy:
First, it will try to pick a submission from the Okay Submissions
dictionary, in which every reviewer can join the discussion. If no
submission can be picked from the Okay Submissions, the Algorithm
will search for a submission from the Bad Submissions dictionary,
which has the best Local Score in the current time slot. If that is
still not possible, an okay submission with the best Local Score will
be picked. Then, if the Algorithm cannot still pick a submission, a

26 CHAPTER 4. IMPLEMENTATION

submission at the top of the dictionary will be picked. With this
strategy, it is guaranteed that an okay submission will always find the
best time slot, and the bad submissions will still have a good score.
So how can a submission be picked from a dictionary? At first, from
the dictionaries, a group of submissions with a suitable minimum
time zone value and maximum difference between the maximum and
minimum time zone will be collected. In order to choose the key
and values from dictionaries, the new algorithm uses a variable called
“index” as a threshold for the minimum time zone. The algorithm
only takes submissions with the minimum time zone at least equal to
the index if the time slot is sooner than the middle time point of the
working day and at most equal to the index otherwise. This method
decreases the number of submissions that has to be considered for
each time slot. Among the picked submissions, a submission with the
highest agenda score for the time slot will be chosen.
After each scheduling step, the time slot will be updated, and the
choosing algorithm will run as long as at least one submission is still
not on the agenda. If submission for a time slot cannot be chosen
from the dictionary of Ok Submissions, it will choose from the Bad
Submissions. In the end, both dictionaries should contain only empty
list values.
Listing 4.3 shows the Python function, which picks a submission from
a dictionary.

1 def choose_next_submission (submissions , index , duration ,
2 time_slot , day_start , day_end ,
3 is_midpoint , fit_bypass):
4 tz_keys = None
5 if not fit_bypass :
6 if not is_midpoint :
7 tz_keys = [i for i in submissions if
8 i >= index and submissions [i]]
9 else:

10 tz_keys = [i for i in submissions if
11 [tz_max for _, tz_max in submissions [i] if
12 tz_max <= index]]
13 if not tz_keys :
14 tz_keys = [i for i in submissions if
15 submissions [i]]
16 tz_keys .sort ()
17 best_choice = None
18 best_tz_min = None
19 best_tz_dif = -30
20 best_point = 0
21 for tz_min in tz_keys :
22 for submission , tz_max in submissions [tz_min]:
23 agenda_item = Agenda (submission , time_slot ,
24 duration)
25 points = points_for_agenda (agenda_item)

4.2. THE MAGIC ALGORITHM 27

26

27 if check_if_submission_fit_timeslot (time_slot ,
28 day_start , day_end , duration , tz_min ,
29 tz_max , fit_bypass):
30 point = points [0] / points [3]
31 if point > best_point or (
32 point == best_point and
33 tz_max - tz_min >= best_tz_dif):
34 best_choice = (submission , tz_max)
35 best_point = point
36 best_tz_min = tz_min
37 best_tz_dif = tz_max - tz_min
38 if best_choice :
39 if (best_point > 0 and fit_bypass) or
40 (best_point == 1 and not fit_bypass):
41 submissions [best_tz_min]. remove (best_choice)
42 return best_choice [0]
43 return None

Listing 4.3: Function for choosing submission for the next time slot

• Solution for PC-Chairs and their time zones
A simple solution for the instability in case there is more than one
PC-Chair is that only one PC-Chair should be picked in case they are
too far away. The PC-Chair that is closer to other program committee
members should be picked. The code snippet for this improvement is
shown below.
Listing 4.4 shows the code for picking chairs in case of the All Chair
option.

1 # Pick chairs based on time zones
2 def pick_chairs (tz_min , tz_max , tz_avg , chairs):
3 ...
4 if at_least_chairs == AtLeast .ALL:
5 chairs_picked = []
6 least_bad_chair = None
7 least_bad_chair_diff = sys. maxsize
8 for chair in chairs :
9 chair_tz = get_member_timezone (chair)[0]

10 . total_seconds ()
11 avg_diff = abs(tz_avg - chair_tz)
12

13 if chair_tz < tz_min or chair_tz > tz_max :
14 if avg_diff < least_bad_chair_diff :
15 least_bad_chair_diff = avg_diff
16 least_bad_chair = chair
17 else:
18 chairs_picked . append (chair)
19 ...

Listing 4.4: The code that performs picking chairs for “All Chairs” option

28 CHAPTER 4. IMPLEMENTATION

• Solution for agenda items with invalid discussion time or start
time
The start time on Overflow Day is adjusted to begin at the correct
start time.
In order to avoid agenda items with invalid start time or duration, the
new algorithm will calculate the next time slot every time a submission
is scheduled. If the next time slot exceeds the end of the current
working day, it will be reassigned so that the next submission will
begin on the next working day. For Overflow Day, the time slot
can exceed the discussions end time as it is already the last day
to be scheduled, even when the time slot is invalid to the agendas
configuration. However, the scores of all submissions in this time slot
will not be calculated.
Listing 4.5 shows the code snippet used to calculate the next free time
slot.

1 def schedule_submissions_alter (okay_submissions ,
2 bad_submissions , day1_start , day1_end , day2_start ,
3 day2_end , duration , spill_logging =True):
4 ...
5 # Schedule all the submissions
6 submission = True
7 while submission :
8 ...
9 time_slot = agenda_item . timestart +

10 agenda_item . duration
11 if time_slot + duration > day_end :
12 if day_end == day1_end :
13 day_start = day2_start
14 day_end = day2_end
15 time_slot = day_start
16 elif day_end == day2_end :
17 day_start = datetime . combine (
18 AgendaConfig . get_day_n (2) ,
19 day1_start .time ()
20)
21 day_end = datetime . combine (
22 AgendaConfig . get_day_n (2) ,
23 day1_end .time ()
24)
25 time_slot = day_start
26 ...
27 ...

Listing 4.5: Code snippet for recalculate the time slot for next submission

4.2. THE MAGIC ALGORITHM 29

Figure 4.3 shows an example of an agenda created using the new Magic
Algorithm.

Figure 4.6: A new Magic Algorithm’s Agenda

The evaluation of the result from the new Algorithm will be discussed in
Evaluation Chapter.

30 CHAPTER 4. IMPLEMENTATION

4.3 New Features and Changes

Besides the Magic Algorithm, some tickets in the synchroPC’s Trello-Board
were implemented during the project. New Back-end and Front-end features
will be described in this section.

4.3.1 Reschedule suspended papers

Figures 1 and 2 show how the reschedule function works on the Personal
View page. During a session in SynchroPC, a PC-Chair user can suspend a
discussion, and the suspended paper will be added to the list on the right
side of the page. However, the suspended discussion is disappeared from the
agenda and cannot be normally resumed later by the PC-Chairs. In order
to solve this, a button is added nearby with the title of the suspended paper
on the right side list, indicating that PC-Chair can resume the discussion
of this paper by clicking the button. As a result, the discussion for that
paper will be added back to the top of the agenda. The timestamp for
other discussions will be pushed back to keep the correctness in time of the
agenda.

4.3.2 Hide and Show Agenda

Figure 3 describes what the Personal View page looks like for a PC-Chair
and a normal member of the Program Committee when a PC-Chair hides or
shows an agenda. When a PC-Chair initializes an agenda, it should not be
public for other reviewers because presumably, the PC-Chairs must adjust
the agenda, for example, by changing the order of the paper discussions or
adding breaks between them. Until PC-Chairs are finished with the editing,
the agenda should remain private and only visible to PC-Chairs. During the
discussion, a PC-Chair can also hide or show the agenda when he wants to
edit the current agenda.

4.3.3 Undo agenda editing

Figure 4 shows the position of Undo agenda button on the Edit Agenda page.
Using the Undo button, a PC-Chair can undo his editing when he makes
a mistake. Each time the PC-Chair clicks the Undo button, the agenda is
reversed to its previous state.

4.3.4 Change the decision for a paper

Figure 5 shows how a PC-Chair can change the decision of a paper. On the
Roles for Paper page, the PC-Chair can choose a paper and then change its
decision using a drop-down list. To confirm the decision, the PC-Chair can
click on the Save button, which will be saved to the database.

4.3. NEW FEATURES AND CHANGES 31

4.3.5 Add filter to reject weak account’s password

It is a problem that a user can use a weak password for his or her account.
A password filter guarantees that a password must have a minimum of eight
characters and will be rejected if it is a common password.

4.3.6 New Unit Test cases for the Magic Algorithm

With a long development time, the unit tests have been forgotten to be
adjusted and could not be run anymore. In order to develop new unit test
cases for the Magic Algorithms, all the unit test cases for it have been
renewed and can be run normally. The new unit test cases compare the
quality of agendas and the runtime from both Algorithms. When an agenda
from the new Magic Algorithm is worse than an agenda from the old one,
the results will be logged in to a .json file under the folder “db”.

4.3.7 Minor changes

Some minor changes have been made to improve the user experience for
SynchroPC:

• PC-Chair will now see the names of PC-Members instead of their E-
Mails when he initials a new Agenda

• In the Personal View page, the CoI symbols have been made bigger to
improve readability.

32 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

This chapter elaborates on the evaluation process to determine if the
improvements of synchroPC fulfill the goals of the thesis.

5.1 The Evaluation of Magic Algorithm

How can the new Magic Algorithm be evaluated? The result of new and old
Algorithms should be calculated and compared to determine which is better.

5.1.1 Test Planning and Design

According to Schneider [9], the following aspects must be defined for each
test case:

Set up

Before the tests can be run, a context must be defined. At this point, all
the data of Submissions with its information and CoI assignments, all the
Members, their countries, time zones and roles in the Program Committee
must be available in the database.
In this project, the submissions and members data will be imported from
an Excel file named “Faked Conf Data-v03.xlsx” under the folder “sample-
input” from SynchroPC’s repository. Also, under the folder “src/DB”, there
is an instruction to import the countries and time zones information from
the SQL Database.
In total, 18 Papers and 12 EasyChair members will be imported.

Input for the tests

As inputs for both old and new Algorithms, a list of submissions, the “from”
and “to” dates, start and end time, the default duration for each discussion

33

34 CHAPTER 5. EVALUATION

and the PC-Chairs option must be provided.
The values of each input field that are used for testing are listed below:

• The number of PC-Chairs
This input determines how PC-Chairs will be picked for each Sub-
mission. The number of Chairs can be None, One or All (equal to
Two).

• The number of Submissions that will be scheduled
This input decides how the Submissions will be scheduled for the day’s
start and end time in Agenda Configuration, which affects the time
and memory usage of the Algorithm.
For testing, both algorithms must use the same set of submissions.
The number of papers will be used for testing are 8, 12 and 18. Which
number of papers are chosen will be declared specifically for each test
case. If the number of papers is n, the set of submissions used for the
tests will be all submissions with the id number between 1 and n.

• The discussion time for each day and each agenda item
This input affects the number of papers that can be fit in a day. For
the tests, the days “07/01/2022” and “07/08/2022” will be used as
input for meeting days. Two intervals will be used as start and end
times for a new Agenda. The first interval is from 9 to 17 o’clock and
the second interval is from 8 to 14 o’clock.
For each agenda item in the tests, the duration is 45 minutes.

In addition to the inputs, there is another important factor. With the All
Chairs option, it must also be considered if the Chairs are geographically
close or far away from each other. Two PC-Chairs from imported data will
be used for testing: Brianna Knapp and Barbara Bently.

• In the case of two PC-Chairs are close to each other, Brianna Knapp
will have the value “Germany” and Barbara Bently will have the value
“Ukraine” for the Country attribute.

• In the case of two PC-Chairs far from each other, Brianna Knapp
will have the value “Brazil”, and Barbara Bently will have the value
“China” for the Country attribute.

For None and One Chair option, this factor is redundant; therefore, there
will be no test for these particular cases. However, to perform another
test, the PC-Chairs setting must be equal for both Algorithms. For other
tests, the countries of the two PC-Chairs will be set like in the case of two
PC-Chairs are close to each other, which means Brianna Knapp will have
the value “Germany” and Barbara Bently will have the value “Ukraine” for
the Country attribute.

5.1. THE EVALUATION OF MAGIC ALGORITHM 35

Output of the tests

As output, an Agenda should be created for each Algorithm, which contains
the working schedule for each Submission. The users should see for each
Submission the discussion duration, index number, name and the quotient
between the number of Reviewers that can take part in the discussion and
the total Reviewer amount of each Submission. Then, the quality of the new
Magic Algorithm can be evaluated, using the result from the old Algorithm
as a threshold.

Evaluation Criterion

The criterion to evaluate the output for both Algorithms are defined in the
following order:

• The number of agenda items in both old and new Agendas, which has
invalid discussion time.

• The number of agenda items in both old and new Agendas, in which
all Reviewers can join.

• The quotient between the sum of Local Score and the sum of Possible
Score of the submissions, which are impossible to be discussed by all
reviewers.

Number of test cases

There are:

• Three available input values for the number of PC-Chairs

• Three available input values for the number of Submissions that will
be used

• Two intervals which is used to initial the start and end time in the
Agenda’s Configuration

• Two additional test cases for the All Chairs option, when the Chairs
are far from each other

In total, there must be at least 3 * 3 * 2 + 2 = 20 test cases to compare the
old and new Magic Algorithms.

5.1.2 Result and Analysis

The complete setup for each test case and each Algorithm’s result can be
seen in the test result’s folder. This section attempts to describe and explain
the results to determine the quality of the new Algorithm compared to the
old one.

36 CHAPTER 5. EVALUATION

The number of agenda items which have invalid discussion time

Figure A.1 presents the number of invalid agenda items of both algorithms
for each test case. In this criteria, the new Algorithm has made better
agendas: there is no invalid agenda item in every test output. On the
contrary, every Agenda which was created by the old Algorithm has invalid
agenda items. The old Algorithm has not checked for the validation of each
agenda item, which makes it possible to have invalid entries in the Agenda.
This result indicates that the problem from the old Algorithm has been
solved in the new one.

The number of agenda items in which every PC-Members can
participate in

Figure A.2 presents the number of agenda items in which every PC-Members
can join for each test from both algorithms. In case there are eight papers
to discuss, the agendas from the old Algorithm seem to have an equal or a
slightly more significant amount of perfect agenda items compared to the
new one. However, if there are twelve or eighteen papers to discuss, the
number of perfect agenda items from the new Algorithm is equal to or more
than from the old Algorithm’s Agenda. Especially in all test cases with the
All Chair option, the agendas from the new Algorithm are always better in
this criteria.
What can be seen in these results is that the new Algorithm can deal with
a medium or significant amount of papers and handle the case of more than
one PC-Chairs better than the old Algorithm. The old Algorithm always
tries to maximize the Local Score for an agenda item when it is possible to
do so. In order to maximize the Local Score for a small number of agenda
items, the other agenda items are invalid in time, or sometimes, there are
long breaks between agenda items. On the other hand, the new Algorithm
will add no break to the Agenda. It tries to maximize the Local Score of the
Agenda by dividing the total time for discussion in a day into time slots and
finding the best Submission that suits each time slot. Although the number
of perfect agenda items may be less in a few cases, every agenda item from
the new Algorithm’s agendas is guaranteed to be valid.

The quotient between the sum of Local Score and the sum
of Possible Score of agenda items, which are impossible to be
discussed by all reviewers

Figure A.3 shows the quotient for each test from both algorithms. In
fourteen test cases, the quotient from the old Algorithm’s Agenda is equal
to or more significant than the one from the new Algorithm’s Agenda. In
most test cases, the agenda items, which are impossible for all reviewers to
join, usually have invalid discussion time in the old Algorithm’s Agenda.

5.2. DISCUSSION 37

They are also closed to each other. The invalid discussion time of an item
makes the start time from the following agenda items invalid. As a result,
the discussion of an item has no effect or is insignificant to other discussions.

5.2 Discussion

This section describes the problems encountered during the further devel-
opment of SynchroPC and its current limitations.

5.2.1 The lack of comments in code, PEP-8’s Usage and
Python code linters

Not many comments had been written in the file of Magic Algorithm, which
is one of the reasons why it is hard to understand and explain in the first
place. The Magic Algorithm is a complex one with many steps, and it needs
explicit, detailed comments in the code file so that other developers can
follow and understand it in the future. Moreover, the Style Guide for Python
Code, PEP-8, had not been strictly followed. In future works, developers
should be aware of these problems and avoid them, not only for the Magic
Algorithm but also for other modules.

5.2.2 Run time of the new Magic Algorithm

Table 5.1 shows how long the new Magic Algorithm will run with different
setup and input. Compared to the old Algorithm, the new one is about eight
times slower in the case of 50 papers. In order to find optimal Submission
for each time slot, the Algorithm has to loop multiple times through all of
the submissions in the worst case. However, the run time from the new
Magic Algorithm should be acceptable, as the number of papers that have
to be scheduled hardly reaches the amount of 50 papers.

Setup
Old Magic Algorithm’s

run time
(sec)

New Magic Algorithm’s
run time

(sec)
5 Submissions, 10 Reviewers 0.12 0.20
14 Submissions, 25 Reviewers 0.22 1.22
25 Submissions, 50 Reviewers 0.51 2.92
50 Submissions, 100 Reviewers 1.26 8.42

Table 5.1: The runtime in second of both algorithms, in case the discussion
time is from 8:00 to 18:00, the PC-Chair option is “one” and the PC-Chairs
are in the same place (Germany)

38 CHAPTER 5. EVALUATION

5.2.3 Magic Algorithm Optimization

Overall, the new Algorithm seems to be better than the old one. However,
the generated Agenda using the new Algorithm is not guaranteed to be the
most optimal Agenda. Other improvement ideas for the Algorithm had not
been chosen due to the lack of research time and the Algorithm’s complexity.

5.2.4 Further Improvements in Front-end

During this project, a few improvements have been made to the Front-end,
but not significantly improved. Most of the web pages in SynchroPC are
not responsive, and the layouts for those pages are still not optimal.

Chapter 6

Conclusion

This chapter summarizes the most important topics that were discussed in
the thesis. Moreover, it provides an outlook on how synchroPC could be
improved in future works

6.1 Summary

SynchroPC is a web application, which is for the coordination and exchange
of program committee meetings of scientific conferences. However, the
agenda generated for the program committee was not optimal. There are
some new Security and Usability requirements from the customers that need
to be added to the web application. In the course of this thesis, synchroPC
was further developed, following the Principle of Software Engineering.
The main goal of the thesis is to improve the generated agenda’s qual-
ity, implement new front-end functionalities for account activation and
administration, and new features using collected requirements. Django was
continually used as the main framework for the server-side of the application.
Along with Django, the Boostrap framework and jQuery library has been
used to handle the client-side of the application.
Using Requirement Engineering, new non-functional requirements for Se-
curity and Usability have been collected and implemented. The Magic
Algorithm used to create agendas for the program committee has been
further improved and tested. Some bugs in Front-end have been identified
and fixed using the tickets in Trello Board.
Overall, the results obtained from the tests for Magic Algorithm indicate
that the new Algorithm can generate better agendas within a reasonable
amount of time. The output from the Algorithm is not guaranteed to be
optimal, but it is close to the optimal agenda.
With the new improvements, synchroPC can continually be used more
efficiently and is easier to be maintained and further developed in related
future works.

39

40 CHAPTER 6. CONCLUSION

6.2 Outlook
There are still issues on the Front-end side of the web application that
future developers should look into. Moreover, some alternative ideas could
be used to develop a new Magic Algorithm, such as a Genetic Algorithm,
or formulate the current Scheduling problem to turn it into a Constraint
Satisfaction Problem and then apply the Backtracking Algorithm to solve
it. Whether they can produce a better result than the new developed Magic
Algorithm must be answered using further research and experiments.

Appendix A

Evaluation Data

A.1 Test setup and input

Test
No.

Brianna’s
country

Barbara’s
country #Chairs From To Start

time
End
time #Submissions

1 Germany Ukraine 0 07/01/2022 07/08/2022 9:00 17:00 8
2 Germany Ukraine 0 07/01/2022 07/08/2022 9:00 17:00 12
3 Germany Ukraine 0 07/01/2022 07/08/2022 9:00 17:00 18
4 Germany Ukraine 0 07/01/2022 07/08/2022 8:00 14:00 8
5 Germany Ukraine 0 07/01/2022 07/08/2022 8:00 14:00 12
6 Germany Ukraine 0 07/01/2022 07/08/2022 8:00 14:00 18
7 Germany Ukraine 1 07/01/2022 07/08/2022 9:00 17:00 8
8 Germany Ukraine 1 07/01/2022 07/08/2022 9:00 17:00 12
9 Germany Ukraine 1 07/01/2022 07/08/2022 9:00 17:00 18
10 Germany Ukraine 1 07/01/2022 07/08/2022 8:00 14:00 8
11 Germany Ukraine 1 07/01/2022 07/08/2022 8:00 14:00 12
12 Germany Ukraine 1 07/01/2022 07/08/2022 8:00 14:00 18
13 Germany Ukraine 2 07/01/2022 07/08/2022 9:00 17:00 8
14 Germany Ukraine 2 07/01/2022 07/08/2022 9:00 17:00 12
15 Germany Ukraine 2 07/01/2022 07/08/2022 9:00 17:00 18
16 Germany Ukraine 2 07/01/2022 07/08/2022 8:00 14:00 8
17 Germany Ukraine 2 07/01/2022 07/08/2022 8:00 14:00 12
18 Germany Ukraine 2 07/01/2022 07/08/2022 8:00 14:00 18
19 Brazil China 2 07/01/2022 07/08/2022 9:00 17:00 18
20 Brazil China 2 07/01/2022 07/08/2022 8:00 14:00 18

Table A.1: Setup and input for each test case. The number of submissions
also indicates which submissions are used for the test. If the number of
submissions is n, all the submissions that have the id number from 1 to n
will be used for the test.

41

42 APPENDIX A. EVALUATION DATA

A.2 Agenda items with invalid duration or start
time

Test No. Old Magic Algorithm New Magic Algorithm
1 4 0
2 7 0
3 9 0
4 5 0
5 8 0
6 11 0
7 4 0
8 7 0
9 9 0
10 5 0
11 8 0
12 11 0
13 4 0
14 7 0
15 9 0
16 5 0
17 8 0
18 11 0
19 12 0
20 14 0

Table A.2: Number of discussions, which has invalid discussion time or
duration

A.3 Agenda items, in which all reviewers can join

A.3. AGENDA ITEMS, IN WHICH ALL REVIEWERS CAN JOIN 43

Test No. Old Magic Algorithm New Magic Algorithm
1 4 4
2 5 5
3 9 9
4 3 2
5 3 3
6 5 5
7 4 4
8 5 5
9 9 9
10 3 2
11 3 3
12 5 5
13 4 2
14 5 5
15 8 9
16 2 2
17 2 3
18 4 5
19 0 6
20 0 1

Table A.3: Number of discussions, in which all reviewers can join

44 APPENDIX A. EVALUATION DATA

A.4 Agenda items, in which all reviewers can join

Test No. Old Magic Algorithm New Magic Algorithm
1 11/19 10/19
2 15/28 15/28
3 19/34 20/34
4 10/22 10/22
5 12/31 15/31
6 14/42 20/42
7 16/24 14/24
8 23/36 22/36
9 29/44 27/44
10 17/29 16/29
11 25/45 26/45
12 27/57 31/57
13 20/28 18/28
14 30/43 27/43
15 38/53 35/53
16 27/40 21/39
17 35/55 32/55
18 43/73 38/73
19 32/69 36/69
20 47/89 40/89

Table A.4: Quotient between the sum of Local Score and the sum of
Possible Score of the submissions, which are impossible to be discussed by
all reviewers

Appendix B

Contents of the CD

A CD is attached to this bachelor thesis, which consists of the following
content:

• The bachelor thesis in digital form (.pdf)

• The most recent version of the source code (as of 22.08.2022)

• Evaluation data. There are 20 sub-folders, each has the name in form
“test<test-no>_<chair-option>_<start-time>-<end-time>_<number-
of-submissions>”

– “test-no”: The index of the test. It can have the value from 01
to 20

– “chair-option”: The value of chair option in Agenda’s Configura-
tion. It can be “none”, “one”, “all-close” and “all-far”.

– “start-time”, “end-time”: The day’s start and end time of the
agenda in Agenda’s Configuration.

– “number-of-submissions”: The number of submissions that have
been used for the tests. It can be 8, 12 or 18.

45

46 APPENDIX B. CONTENTS OF THE CD

Bibliography

[1] K. S. McKinley, More on improving reviewing quality with double-blind
reviewing, external review committees, author response, and in person
program committee meetings, Jun. 2015. [Online]. Available: https:
//www.microsoft.com/en-us/research/publication/more-on-
improving-reviewing-quality-with-double-blind-reviewing-
external-review-committees-author-response-and-in-person-
program-committee-meetings/.

[2] K. Schneider, Lecture 1: Einführung, Grundlagen der Software-
Technik, 2019.

[3] I. Sommerville, Software engineering (Always learning). Pearson, 2015,
isbn: 9781292096131. [Online]. Available: https://books.google.
de/books?id=Cg5irgEACAAJ.

[4] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al.,
“Manifesto for agile software development,” 2001. [Online]. Available:
http://agilemanifesto.org/.

[5] K. BECK, Extreme programming. nummer isbn-13: 978-3827321398,
2003.

[6] A. Metzner, Software Engineering - kompakt, Hanser eLibrary.
München: Hanser; 2020. doi: 10.3139/9783446463653.

[7] J. K. Ousterhout, A philosophy of software design. Yaknyam Press
Palo Alto, 2018, vol. 98.

[8] Iso 25010, https://iso25000.com/index.php/en/iso- 25000-
standards/iso-25010.

[9] K. Schneider, Abenteuer Softwarequalität : Grundlagen und Verfahren
für Qualitätssicherung und Qualitätsmanagement, Abenteuer
Software-Qualität, Das Q-Buch. Heidelberg: dpunkt-Verl.; 2012,
Abenteuer Software-Qualität, Das Q-Buch, isbn: 9783898647847.
[Online]. Available: https://www.tib.eu/de/suchen/id/TIBKAT%
3A671822039.

47

https://www.microsoft.com/en-us/research/publication/more-on-improving-reviewing-quality-with-double-blind-reviewing-external-review-committees-author-response-and-in-person-program-committee-meetings/
https://www.microsoft.com/en-us/research/publication/more-on-improving-reviewing-quality-with-double-blind-reviewing-external-review-committees-author-response-and-in-person-program-committee-meetings/
https://www.microsoft.com/en-us/research/publication/more-on-improving-reviewing-quality-with-double-blind-reviewing-external-review-committees-author-response-and-in-person-program-committee-meetings/
https://www.microsoft.com/en-us/research/publication/more-on-improving-reviewing-quality-with-double-blind-reviewing-external-review-committees-author-response-and-in-person-program-committee-meetings/
https://www.microsoft.com/en-us/research/publication/more-on-improving-reviewing-quality-with-double-blind-reviewing-external-review-committees-author-response-and-in-person-program-committee-meetings/
https://books.google.de/books?id=Cg5irgEACAAJ
https://books.google.de/books?id=Cg5irgEACAAJ
http://agilemanifesto.org/
https://doi.org/10.3139/9783446463653
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.tib.eu/de/suchen/id/TIBKAT%3A671822039
https://www.tib.eu/de/suchen/id/TIBKAT%3A671822039

48 BIBLIOGRAPHY

[10] A. Spillner and T. Linz, Basiswissen Softwaretest : Aus- und Weiterbil-
dung zum Certified Tester ; Foundation Level nach ISTQB-Standard.
Heidelberg: dpunkt-Verl.; 2005, isbn: 3898643581. [Online]. Available:
https://www.tib.eu/de/suchen/id/TIBKAT%3A489520014.

https://www.tib.eu/de/suchen/id/TIBKAT%3A489520014

	Introduction
	Motivation
	Goals Definition
	Structure of the Thesis

	Fundamentals
	synchroPC
	Principles of Software Engineering
	Working systematically
	Take requirements into account effectively
	Programming understandably
	Uphold Testing and Quality

	Requirements
	Functional Requirements
	Non-functional Requirements

	Implementation
	Workflow
	The Magic Algorithm
	How it works
	Problems in the algorithm

	New Features and Changes
	Reschedule suspended papers
	Hide and Show Agenda
	Undo agenda editing
	Change the decision for a paper
	Add filter to reject weak account's password
	New Unit Test cases for the Magic Algorithm
	Minor changes

	Evaluation
	The Evaluation of Magic Algorithm
	Test Planning and Design
	Result and Analysis

	Discussion
	The lack of comments in code, PEP-8's Usage and Python code linters
	Run time of the new Magic Algorithm
	Magic Algorithm Optimization
	Further Improvements in Front-end

	Conclusion
	Summary
	Outlook

	Evaluation Data
	Test setup and input
	Agenda items with invalid duration or start time
	Agenda items, in which all reviewers can join
	Agenda items, in which all reviewers can join

	Contents of the CD

