Gottfried Wilhelm
Leibniz Universitat Hannover
Faculty of Electrical Engineering and Computer Science
Institute of Practical Computer Science
Software Engineering Group

Identification and Analysis of
Practices for Organizing
Development Teams

Master Thesis

in Computer Science
by

Elefteria Merkohitaj

Examiner: Prof. Dr. Kurt Schneider
Second Examiner: Dr. Jil Kliinder
Supervisor: Nils Prenner

Hannover, 26.04.2021

ii

Erklarung der Selbststandigkeit

Hiermit versichere ich, dass ich die vorliegende Master Thesis selbstdndig
und ohne fremde Hilfe verfasst und keine anderen als die in der Arbeit
angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit hat in
gleicher oder &hnlicher Form noch keinem anderen Priifungsamt vorgelegen.

Hannover, den 26.04.2021

Elefteria Merkohitaj

1l

v

Abstract

Recent research in software engineering teams suggests that different organi-
zational aspects of teams, such as teamwork and collaboration, coordination
and communication have been extensively studied. Still, relatively little
research has been carried out on the generalizability of this knowledge.
This thesis addresses this research gap by systematically reviewing the
current literature, with the aim of identifying and analyzing the practices
used by teams to organize themselves. A thematic analysis found team
organizational structures corresponding to small, middle-sized and large
teams. The arrangement of these structures suggested that especially
middle-sized and large teams use agile principles at the team level, whereas
traditional principles are used to facilitate the inter-team coordination by
the management level. These structures were further supported by practices
related to organizational aspects, such as communication, coordination,
collaboration and decision-making. Finally, these results contribute in
the formulation of a model, which should help teams evaluate their
organizational needs and further, provides guidelines in the form of structures
and practices.

vi

Zusammenfassung

Aktuelle Forschungsarbeiten zu Software-Engineering-Teams weisen darauf
hin, dass verschiedene organisatorische Aspekte von Teams, wie z. B.
Teamarbeit und Kollaboration, Koordination und Kommunikation, ausgiebig
untersucht wurden. Dennoch wird die Organizationsstruktur in ihrer
Gesamtheit noch wenig erforscht. Diese Forschungsliicke wird in dieser Ar-
beit durch eine systematische Literatursuche der aktuellen Forschungsliter-
atur adressiert, um die Praktiken, mit denen sich Teams selbst organisieren,
zu evaluieren und zu analysieren. In einer thematischen Analyse wurden
Team-Organisationsstrukturen identifiziert, die kleinen, mittelgrofen und
groken Teams zugeordnet werden kénnen. Die Zusammensetzung dieser
Strukturen deutet darauf hin, dass vor allem mittelgrofse und grofe Teams
agile Prinzipien auf der Teamebene nutzen, wihrend traditionelle Meth-
oden verwendet werden, um die teamiibergreifende Koordination durch
die Managementebene zu erleichtern. Diese Strukturen wurden auflerdem
durch Praktiken unterstiitzt, die sich auf organisatorische Aspekte wie
Kommunikation, Koordination, Zusammenarbeit und Entscheidungsfindung
beziehen. Schlieklich tragen diese Ergebnisse zur Formulierung eines Modells
bei, das Teams helfen soll, ihre organisatorischen Bediirfnisse zu bewerten
und dariiber hinaus Richtlinien in Form von Strukturen und Praktiken
bereitzustellen.

vil

viii

Contents

[L.2 Solution Approach| 0oL

[2__Related Workl
2.1 Teams in Software Engineeringl
[2.2 Organization ot Development Teams|

[3__Foundations|
[3.1 Terminology and Context|

3.2 Guidelines tor Development Teams|
3.3 Systematic Literature Review|

4 Methodology: A SLR|
4.1 Planning Phase| 0000
4.1.1 Step 1: Research Questions|
4.1.2 Step 2: Database Selection|
4.1.3 Step 3: Search Stringf.
4.1.4 Step 4: Inclusion and Exclusion Criterial
42 Execution Phasel L.

4.4 Data Analysis|

5 Findings
.1 Data Analysis|. oo
b.2 Research Questions|
b.2.1 RQI1: Structures for team organization|
b.2.2 RQ2: Practices for team organization|.

6D onl

[6.1 Organizational team structures and practices|

6.2 Implications for practice|
6.3 Generalizability, Limitations and Threats to Validity|

ix

11
11
13
14

19
20
20
21
21
22
23
25
25

29
29
30
31
41

X CONTENTS

7 Model 59
[c.1 Model Presentationl 59
[7.2 Proposed Team Structure Templates| 63

(21 Team structures AT to A4l 63
[(.2.2 Team structures T4 to T 66

I8 Summary and Future Work| 73

[A_Review Protocoll 75
|A.1 Search String| oo 75
[A.2 Research Questions|, 75
IA.3 Inclusion Criterial 75
A4 FExclusion Criterial 76
[A.5 Database Selection] 76
[A.6 Search Process 76

IB_Data Extraction Forml 77

|C Selected Primary Studies| 79

Chapter 1

Introduction

Team organization is the act of coordinating or managing the activities
of a group of people by establishing an orderly, functional, or coherent
structure |67, 68]. Team organizations are a topical area of research,
especially in the social sciences, such as sociology [98, 47| and management
science [36]. Lunenburg [47] describes two forms of organizations: mecha-
nistic and organic organizations. On the one hand, mechanistic structures
are characterised by a centered control of processes and resources, formalized
procedures and practices, where the chain of command is clearly defined. On
the other hand, organic structures are characterised by decentralisation, low
specialisation and less control, allowing a flexibility for the team to be part
of the decision making process.

Many teams could find their needs reflected in the aforementioned
characteristics of these structures. For instance, it is widely accepted that
small teams are easier to handle because of their size. Therefore, one might
encounter smaller teams with a flat structure, with few or no levels between
staff and executives. These teams are apt to operate independently and
have a short chain of command, showing characteristics of an organic team
structure. However, managing a team becomes more challenging the more
the team size increases. In such cases, the solution is often found in control-
centered and hierarchical structures. |39]

The same organisational structures are applied in development teams
inside software development organization. Based on which software devel-
opment model is used inside the organization, teams combine a traditional,
agile or hybrid model with well established team organization structures. For
instance, Chau et al. [14] affirms that more traditional approaches, like the
Waterfall model, promote usage of role-based teams. This team structure
shows similar characteristics to the hierarchical team organisation, where
each of the teams contains members of the same role. Other researchers,
Hoda et al. |35] and Moe et al. [53], identify teams in an agile environment
as self-organizing teams. This allows the teams to have both individual and

2 CHAPTER 1. INTRODUCTION

team autonomy in a change-driven development.

However, current research has shown that more software development
organizations are transitioning to agile [5|. Paasivaara [70] states that the
agile transformation requires changes in the organizational structure of the
software project teams, especially when applying agility at the large-scale.
For instance, a small agile software project can scale up rapidly, involving
more people or even more teams. As the project grows, the responsibilities
divide into specialized people or teams. This can force the team structure
to fall back into having defined roles as in the mechanistic structure defined
above. At this point, teams still want to benefit from the independence
and the flexibility to respond to change, as well as having some control to
managing the rapid growth.

A summary of prior research by Brick et al. [9] suggests that large and
complex development projects can benefit by the combination of flexible
structure of agile teamwork and the structured, plan-driven coordination of
traditional project management into hybrid approaches. However, a hybrid
approach allows the teams to design their team structure and coordination
based on their own needs. Therefore, there is no fixed structure with which
a hybrid team structure or coordination can be identified.

1.1 Problem statement

The research by DeFranco and Laplante [22] on software development teams
found that software development teams have been extensively studied as
well. This research provides an important opportunity to advance the
understanding of organization inside software development teams, regardless
of the traditional, agile or hybrid approach they implement. An overview of
reported experiences regarding team structures in these settings can be useful
to both researchers and practitioners. There is no single method from which
every software team can benefit. In spite of that, the gained knowledge can
serve as a foundation, that guide teams to shape the organisational structure
based on their needs. Furthermore, it can help researchers to analyse and
further investigate how the structures can be improved in order to support
a better teamwork and coordination.

1.2 Solution Approach

The current state of the research on organization of software development
teams suggests that a systematic understanding of how software development
teams organize themselves is still lacking. This thesis addresses the lack of
this overview by conducting systematic literature research for identifying the
practices of organizing development teams with which an agile, traditional
or hybrid organization is implemented. This literature review focuses its

1.2. SOLUTION APPROACH 3

attention to the development teams organizational structures. Moreover, by
following a review plan we deliver comprehensive and transparent research
and answer our research questions clearly.

With this review, this thesis investigates the following research questions:

e RQIl: What development team organizational structures exist in
software development?

With this research question, this thesis investigates and gathers team
organizational structures from the literature. The focus is to analyse
how project development teams are internally organized and if these
structures show are any recurring patterns.

e RQ2: What are the practices for the organization of development
teams?

This research question should give insight into the actual practices
or activities that software development teams use to support their
organization, such as coordination, communication, collaboration and
decision-making practices.

Finally, the team structures, practices and methods are further analysed
to build a model, which can guide software development organizations and
development teams to find the combination best suited for their needs and
their development environment. With this model, this thesis seeks to answer
the following research question:

e RQ3: How can these structures and practices be combined with
traditional, agile or hybrid models?

The research questions are elaborated in the remaining seven chapters of
this thesis. Firstly, this thesis provides an overview of the current literature
on software development teams in Chapter [2] defines the terminology and
context of this research in Chapter Secondly, Chapter [4] introduces the
research methodology and Chapter [f] presents the findings of the systematic
literature review. Next follows the discussion of the findings in Chapter [6]
Finally, this thesis presents the model for organizing software development
teams in Chapter [7] and conclude this thesis by providing a summary and
directions for future work in Chapter [§

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In general, teams have been the focus of numerous studies. Also in the
field of Software Engineering teams are a topical area of research |21} 22].
However, this literature consists of single case studies or experience reports,
which document valuable information about software development teams.
Hence, this experience cannot be applied to other settings. Relatively little
research has been carried out on the generalizability of these findings.

A recent mapping study conducted by DeFranco and Laplante [22]
suggest that the current literature on software engineering teams provides an
important opportunity to advance the understanding of development teams
in general. Whereas software engineering teams are extensively studied,
DeFranco and Laplante’s themes further suggest, that there is a current
paucity of research focusing specifically on synthesizing the knowledge about
teams’ organization. The aim of this chapter is to introduce the context in
which teams have been investigated and give a short review of the current
state of knowledge regarding the organization of software development teams.

The chapter is composed of four sections. First, section will provide
a general overview of teams in software engineering. Next, a summary of
related work on the aspects of organization in software development teams
will then be presented in Section The last Section will attempt
to present previous research, which has intended to provide guidelines for
choosing best suited methods, processes and frameworks based on specific
project and team needs.

2.1 Teams in Software Engineering

Broadly speaking, teams in software engineering are typically studied in the
context of a software development project. Software development projects
can be of different sizes, where the size is mostly defined by the complexity of
the software product to be developed. Thus, software development projects
are divided into small, middle and large projects. The same applies to the

)

6 CHAPTER 2. RELATED WORK

teams which build the software product. The literature review conducted by
Keshta and Morgan in [39] suggests that teams with less than 15 members
are considered small teams and those with 15 to 25 members medium teams,
whereas large teams may have more than 25 members.

In 2004, Sawyer [82| studies teams regarding the software development
methods they use. He mentions three archetypes of software development
teams; sequential, group and network archetypes, based on how they fit into
the traditional, iterative or agile methods respectively. The first archetype,
the sequential one, represents a hierarchical, role-based and formal team
organization structure, where the team follows a linear, task-driven and
well-planned software development practice, often observed in the settings
of traditional waterfall development. Next, the group archetype shows
characteristics of a social structure which is based on collaboration, norms
and regulations and where the collective skills and weaknesses of the members
of the group are taken into consideration for the task completion. This is a
typical structure of the first forms of iterative software development methods,
such as the spiral model. In the last one, namely in the network archetype,
the team is more concentrated on the product than on the processes. The
social structure is defined here by people’s connections, which give shape to
the less formal development processes. Such characteristics are observed in
iterative development as well as in teams implementing agile development
methods.

In a more recent paper, Sharp et al. [89] consider the physical and
temporal distance of teams members and mention co-located and distributed
teams. While in a co-located team all team members share and work on
the same physical work environment, a distributed team can be spread
geographically and temporally. Sharp et al. [89] recognize in this context
‘three main flavours’ of distribution: distributed teams, dispersed teams
and hybrid teams. Whereas distributed teams have sub-teams in different
locations, in dispersed teams each team member is located in a different
place. Hybrid teams are a combination of both distributed and dispersed
teams.

Further, the set of teams working together in the same project is called
the project team |6, 24, 54]. In a distributed project environment, the teams
near the home organization are called near-shore teams, the ones in the home
organization are called on-shore teams and the farthest are called off-shore
teams |41} 77, 197]. When all these teams answer to the same organization,
then they can also be called remote teams [86, |89, |90]. Moreover, in order
to reduce development cost, software companies engage external work-force
for performing project work, such as, in the case of software development
projects, for the development or testing activities. The outsourced work-
force is a contracted team which, on the one hand, is attached to the core
project team to achieve the project common goal and, on the other hand,
answers to its own organization [100, 93|. In this case, the whole project

2.2. ORGANIZATION OF DEVELOPMENT TEAMS 7

team can be called a virtual team [55, 56, |74].

2.2 Organization of Development Teams

One of the earliest works on software development teams is the discussion
of team archetypes by Sawyer 82|, which is already described in the section
above. It is one of the first attempts to summarize team types among
different software development environments. These archetypes did not
only put the teams in the traditional and iterative software development
context, but also described aspects of organization such as decision-making,
communication and collaboration. At the very beginning of the agile
methods, this almost two decades old argumentation has correctly recognized
substantial aspects of team organization.

However, in the last five years there have been several attempts to syn-
thesize the current state of knowledge on software development teams. Even
though these reviews do not directly address the organization of development
teams, many of them have investigated and summarized some of the aspects
of organization. This thesis identified four additional publications which
investigated the following aspects: decision-making |17], communication |21,
team size and project domain [39], and team autonomy [1]. An important
fifth review [22| aimed to fundamentally synthesize research performed in
the area of software engineering teams and provided valuable insight into
this part of the literature.

In 2016, Cunha et al. [17] synthesize empirical studies on ‘decision-
making phenomenon in the software project management from a naturalistic
perspective’. Among others, their review suggests that some of the factors
influencing the decision-making process are the agile development practices,
stakeholders involvement and communication. While the self-managing
teams in the agile development practices challenge the traditional, controlling
decision authority, the stakeholders closely involved in the project tend to
dominate it by aligning the decisions with their business objectives. Further,
the communication decisions are discussed as the competencies of project
managers to decide what, who, how and when to communicate.

In addition, DeFranco and Laplante |21] analyze the literature to
give insights into the current state of the software development team
communication research and to point out the gaps of research in this field.
First, their review showed that the most active communication research
areas in software development are global software development, project
effectiveness and effective teamwork. Next, they speculate that the research
gaps may be found in the least prevailing research areas, such as agile
processes, shared understanding and generic software engineering processes.
However, they do not exclude the possibility that there are still research
gaps present in the most prominent research areas listed above and further

8 CHAPTER 2. RELATED WORK

speculate that the gap may ‘point toward the rigor of research’ in those
areas. At the end, they summarize the major and common findings about
communication in software engineering teams. Among these findings, two
are the most outstanding: the emphasis on tools and strategies to improve
communication and project performance and the ideal team dynamics and
composition to improve communication for effective teamwork.

In a comparison literature review of traditional and agile methods
regarding team size and project domain, Keshta and Morgan [39] conclude
that there is a relation between project size and team size: the bigger the
project, the larger the team. Further, these two factors seem to drive also
the methodology size in the same proportion: the bigger the project and
team size, the more heavier the methodology. Their argumentation implies
that a heavy-weighted methodology is represented by a good organization
of work, planning, documentation and high quality control, as typical
characteristics of the more traditional, plan-based methods such as waterfall,
used in projects with large teams. Further, they categorize agile methods
as light-weight and affirm the widely accepted statement, that agile thrives
in small teams with 15 to 25 members. Nevertheless, with the evidence of
implementing agile in large projects found in the literature, the authors do
not rash to generalize that agile methods cannot be used with large teams.
This implies that the application of agility in large-scale projects is still
difficult.

In the most recent literature review, Acharya and Colomo-Palacios [1]
provide insights to self-organization of agile teams from the literature.
Topics they address include the benefits and challenges of autonomous
agile teams, the way these teams organize themselves as well as possible
facilitation strategies for enforcing autonomous agile teams. While they
describe findings from the selected literature which relate to the topics
above, they fail to disclose an aggregation of their findings and to directly
answer the research questions. However, worth mentioning key information
regarding the organization of autonomous agile teams is that team members
and leaders face challenges while shifting to new agile roles, which require a
change on their mindset. Other valuable insights include the emphasis to the
team leader’s role in supporting and empowering self-organization, as well
as communication increase inside and across teams for facilitating learning
and taking ownership of tools and methods.

In 2018, DeFranco and Laplante [22] conducted a thorough literature
research in the area of software engineering teams. They affirm that, in
general, software engineering teams have been a prevailing area of study.
However, they recognize the necessity of an overview of the knowledge
from this area and provide a fundamental assessment of the research on
software engineering teams. With a keyword content analysis, DeFranco
and Laplante classify this research into the following seven categories,
listed by descending prevalence: teamwork/collaboration, process/design,

2.2. ORGANIZATION OF DEVELOPMENT TEAMS 9

coordination, global/ Ossﬂ tools, project improvement, communication and
agile. Among the most researched team types, the researchers identified
traditional, global, pair programming, agile and OSS teams, also presented
in decreasing prevalence.

Broy and Kuhrmann [13] view teams ‘as a means of structuring personnel’
and as a consequence, state that teams need clear roles and competencies.
For that, development teams are embedded in the project organization and
work together to achieve the common goal. Moreover, they present two
forms of development team structures in software projects: hierarchical and
democratic team organization. The hierarchical organization is build in
a top-down approach and has the form of a pyramid. While managers,
such as project managers, occupy the top of the structure, the development
teams are located at the bottom of the organizational structure. In contrast,
the democratic team organization moves from the strict reporting lines of
the top-down approach and applies instead collective group decisions and
responsibility. In this structure, the levels of organizations are flattened and
the management style is based on leadership and collaboration.

Traditional versus Agile Organization

The hierarchical and democratic team organizations by Broy and
Kuhrmann [13| described above are similar with the findings of several
publications [2, 60|, which have compared traditional and agile software
development methods. These authors describe the team organization
in traditional approaches as pre-structured, where team members are
specialists, who work plan-oriented and have specific roles. These roles
are assigned ‘based on the skill levels of each individual’ [2]. Overall, the
organization culture in traditional approaches, similar to the hierarchical
organization, is based on command and control |2} |60]. In contrast to this
top-down approach, projects implementing agile methods show similarities
with the democratic team organization. Agile teams are characterized by
self-organizing teams, where the project management is based on leadership
and collaboration. These teams are described as cross-functional, where
team members have different skill sets. In addition, agile teams are known
for the frequent involvement and participation of the customer in the
development process. [2, [60] Table summarizes team organizational
aspects for traditional and agile teams, based on the descriptions above.

LOpen-source software

10 CHAPTER 2. RELATED WORK

Aspect Traditional Methods Agile Methods

Project Based on command and Based on leadership and

management and control collaboration

organization

Team organization Pre-structured teams Self-organizing teams

Team members Specialists working in silos Agile, knowledgeable,
cross-functional

Customer involve- Low, passive on-site, active/proactive

ment

Table 2.1: Project and team management in traditional and agile settings |2}
60|

Chapter 3

Foundations

The aim of this chapter is to introduce the reader to background information
on the terminology and methods used in this study. The terminology
and the context of this thesis are elaborated in Section Section
presents a short summary of prominent research on guidelines for software
development teams. A brief description of the research methodology, a
systematic literature review, is presented at the end of this chapter.

3.1 Terminology and Context

To better understand the research focus of this research, it is necessary
to clarify the terminology used to report facts and findings on this thesis.
Some terms, being used in different research fields, carry different meanings,
depending on the context in which they are applied. A typical example
would be the term development, which is not only used within the field
of Software Engineering, but also as a general term in the production of
new goods and services. Nevertheless, in the context of this thesis, this
term is used in association with software development. Furthermore, it is
important to elaborate the aspects of organizing that this thesis investigates.
In its most general sense, organizing refers to the act of arranging something
into a structured whole [67]. Throughout this thesis and relating to teams,
organizing is the act of coordinating or managing the activities of a group of
people by establishing an orderly, functional, or coherent structure. Previous
research has studied several key aspects of organizing software development
teams |53}, |102, |88, 9], such as communication, coordination, collaboration
and decision-making authority, which give form to the structure of a team.
This thesis also considers these four aspects for the investigation of the
organization in development teams. However, there is still some ambiguity
with regard to these terms, especially for communication and coordination.
Definitions of each of the four aspects of organization used in this thesis are
listed in Table B.1l

11

12 CHAPTER 3. FOUNDATIONS

In order to achieve their goals, team members have to constantly com-
municate to and exchange thoughts and ideas with their peers, coordinate
work and tasks, work together to solve issues or dependencies and make
important decisions throughout their project. It is clear that these activities
are dependent on one another. For instance, to coordinate work and tasks,
team members have to somehow communicate with one another. During
the process of decision making, the communication of thoughts and ideas is
also crucial. From this perspective, communication seems to be the center
of these activities, and consequently, can boost or inhibit coordination and
collaboration.

Communication. In general, the Oxford English Dictionary [15] defines
communication as ‘the transmission or exchange of information, knowledge,
or ideas, by means of speech, writing, mechanical or electronic media,
etc.;|...]". Sharp and Robinson similarly define in [88] that, in the context of
software development, communication ‘takes place when two or more people
exchange information or knowledge through verbal or non-verbal means’.
Both definitions are used in this thesis when referring to communication
in software development teams. Having said that, this thesis defines
communication as the transmission or exchange of information, knowledge or
ideas by means of speech, writing or signs. More specifically, the aim of this
research is to identify how software development team members communicate
with one another during their daily work, which communication channels
they use and how it affects or defines the overall team organization.

Coordination. When talking about coordination, one can encounter
different points of view. For example, Sharp and Robinson [88], also
supported by a very similar definition of Malone and Crowston [48]|, refer
to coordination as ‘the process of managing dependencies among activities’.
While Sharp and Robinson see the coordination as a process, Nguyen-Duc
et al. [64] refer to the team coordination explicitly as a set of activities,
and thus define it as ‘activities required to maintain consistency within a
work product or to manage dependencies within the workflow’. Still, both
definitions similarly state that coordination somehow handles or manages
dependencies, as a process or set of activities. It can be agreed that both
meanings are important in the process of software development.

To follow a process means following predefined procedures or regulations.
In software engineering that would be the case, when a team follows a
specific development process or model to deliver a software product. For
instance, practicing Scrum means following the activities such as sprint
planning, daily stand-up meetings, sprint review and retrospective for each
iteration. Consequently, the formal activities of these processes, models
or frameworks can define a part of how a software development team
coordinates its work. In contrast, defining coordination as activities makes
the term less formal. In this case, the informal activities, such as peer-to-
peer exchange of information and ideas, indirectly support the success of the

3.2. GUIDELINES FOR DEVELOPMENT TEAMS 13

formal coordination.

Overall, communication seems inseparable from coordina-
tion.Considering the fact that communication in traditional development
methods is defined as rather formal, whereas agile approaches are
characterized by a more informal communication [2], this thesis recognizes
two types of organizations: horizontal and vertical organization. Horizontal
organization refers to the informal, peer-to-peer exchange of information,
ideas and thoughts, whereas vertical organization is more formal and
is defined by regulations in the team level or the different levels of an
organization. In other words, the horizontal organization is seen here as
the informal communication and coordination at the team level, while
the vertical organization is represented by the formal communication and
coordination occurring from bottom-up or top-down through the levels of
the organization. Having said that, it can be speculated that in traditional
settings, teams are characterized by a rather vertical organization, whereas
agile teams practice a more horizontal organization.

Terminology Definition

Organizing is the act of coordinating or managing the activities
of a group of people by establishing an orderly,
functional, or coherent structure. |67, |68]

Communication is the transmission or exchange of information,
knowledge or ideas by means of speech, writing or
signs. |15 [8§]

Coordination is the process of managing dependencies among

activities. [88]

Collaboration takes place when two or more people are working
together on a task. [8§]

Decision-making is the act or process of making decisions. 20|

Table 3.1: Definition of the key terms

3.2 Guidelines for software development teams

In a study of finding balance between agile and plan-driven methods, Boehm
and Turner [11] propose ‘a tailorable, risk-based approach’ for combining
both methods in software development. The suggested approach is based
on 5 steps, which make use of risk for guiding practitioners in choosing
between agile and plan-driven methods or a combination of both for their
software development project. A polar chart with five axes represented the
factors which distinguish these two methods: size or the number of personnel,
criticality of the system to be developed as the loss due to impact of defects,

14 CHAPTER 3. FOUNDATIONS

dynamism as a measure of requirements change per month, skill levels of the
personnel and the culture, as the percent of thriving on chaos versus order.
These factors should aid the practitioners to reflect the characteristics of
their projects, in order to better judge their risks while following the 5-
step approach. Three out of 5 factors, that is personnel, size and culture,
represent the human aspects of a project which shows that the human factor
plays a significant role in the methodology decision.

Since the publication of this model in 2003, tailored methods have been
used and discussed extensively in the literature. Reports from practitioners
and researchers contain valuable insights about which combinations work
best and how to mitigate any obstacles while combining agile and traditional
methods. This thesis makes use of both, the findings from the literature
review as well as the approach presented above, and formulates an approach,
which should guide development teams to choose the development method
and team structure that best fits their needs.

3.3 Systematic Literature Review

Kitchenham et al. [3| propose a systematic literature review as a useful
method for reviewing evidence on a particular study field. A systematic
literature review is ‘a form of secondary study that uses a well-defined
methodology to identify, analyse and interpret all available evidence related
to a specific research question in a way that is unbiased and (to a degree)
repeatable’ [3, p. vi]. In the literature the studies containing the necessary
evidence are identified during the execution of the review and are also called
primary studies. The systematic literature review itself is a secondary study.
While a primary study empirically researches and studies a specific research
topic, a secondary study reviews all primary studies on a specific research
topic with the aim of synthesising evidence related to this research topic.|3]

Moreover, systematic literature reviews are important studies. They are
mostly conducted to summarize empirical evidence on a specific topic of
interest. Other reasons for conducting a literature review are also to identify
a research gap for proposing research topics for further investigation or to
suggest totally new research topics. [3] By undertaking a systematic literature
review, this thesis aims to identify and analyse practices for organizing
software development teams. The gained knowledge should be used to build
guidelines for practitioner teams, who have difficulties with their current
organizational structure and need improvement or a total reform for their
team.

The method of the systematic literature review suggested by Kitchenham
et al. [3] includes a 3-phase process and several activities. The three phases
are: planning the review, conducting the review and reporting the review.
A list of the activities per phase are listed in the Table below.

3.3. SYSTEMATIC LITERATURE REVIEW 15

Planning the Review

Especially the activities started during the planning phase may involve
iteration and they might require refinement during the execution phase. For
example, the most common pre-review activities include defining the research
questions and preparing a review plan which contains the most important
review procedures and controls possible limitations such as researcher bias.
The review plan also contains the research questions, inclusion and exclusion
criteria for the literature selection, research databases and search and data
extraction strategy, among other things. These activities can be piloted and
may be refined several times before undertaking the proper review. |3|

Review Phase Activities per Phase

Identifying the need for a review
Commissioning a review*
Planning the Review Specifying the research question(s)
Developing a review protocol
Evaluating the review protocol*

Research identification
. . Pri tudi lecti
Conducting the Review rumary s u 1es sefection
Study quality assessment
Data extraction and monitoring

Data synthesis

Specifying dissemination mechanisms
Reporting the Review Formatting the main report

Evaluating the report™*

Table 3.2: List of the sub-activities in each phase of the systematic literature
review. The activities marked with * are not mandatory.

In addition to the research questions, the definition of study selection
criteria is one of the most important pre-review activities as it provides the
opportunity to reduce the likelihood of selection bias. These criteria are
divided into inclusion and exclusion criteria and should be defined based on
the research question(s). To increase the reliability of inclusion decisions,
the study selection criteria can be refined during the search process if
necessary. |3|

Moreover, the search strategy is represented by the definition of a set
of terms, which can be used during the execution phase for the research
identification. The set of terms are derived from the research questions of
the review and should contain also synonyms, abbreviations and alternative
spellings of the terminology used in the context of study. These terms
can then be transformed in sophisticated search strings by using Boolean

16 CHAPTER 3. FOUNDATIONS

operators AND and OR. Additionally, the search string may have to be
adjusted to fit to the digital library’s search syntax. There are several
digital libraries relevant to software engineering: IEEE Explore, ACM digital
library, Google Scholar, ScienceDirect, Citeseer, SpringerLink etc. [12].

Conducting the Review

Study Quality Assessment is a method to assess the quality of the primary
studies and has mostly the form of quality checklists. These checklists
contain questions for ‘assessing the extent to which articles have addressed
bias and validity’ |3, p. 21]. Among others, this activity should facilitate the
study selection by providing more detailed selection criteria and weighting
the importance and quality of individual studies. By doing so, the quality as-
sessment further guides the interpretation of findings and recommendations
for future research. Kitchenham et al. [3] accumulate two lists of quality-
check questions, one for each quantitative and qualitative studies and suggest
using them or selecting subsets of them in the context of their own study
and by considering the specific research questions.

Another activity which begins during the definition of the review plan
and becomes more sophisticated during piloting, is the data extraction, which
is recorded in the plan through data extraction form(s). By defining such
forms, the SLR aims to accurately record the knowledge extracted from the
primary studies and to reduce the possibility of bias during the extraction.
These forms need also to be piloted to assess issues such as the completeness
as well as clarity of the instructions or questions. Kitchemham et al. |3]
further suggest that two or more researchers should independently perform
the data extraction.

The final activity in the second phase of the review is data synthesis.
Data synthesis is the process of analysing the collected data and summarising
the results. How the data synthesis is to be performed should also be roughly
specified in the review protocol. Moreover, the synthesis can be descriptive
with a quantitative summary, obtained by using statistical techniques. Both
the extracted information about the studies and quantitative data should be
presented in tabular form, and structured in such a way that the similarities
and differences between study outcomes are highlighted and can easily be
compared. [3]

Reporting the Review

For the last phase of the review, Kitchenham et al.|3] suggest specifying
dissemination mechanisms as well as formatting the systematic review report
and evaluating it. Regarding disseminating the findings of the review, these
can be reported in academic journals and conferences or by other means, such
as in practitioner-oriented journals and magazines, short summary leaflets,

3.3. SYSTEMATIC LITERATURE REVIEW 17

posters, web pages etc. Lastly, the most common forms to report the findings
of a systematic literature review are technical reports, as part of a PhD thesis
or in a journal of conference paper.|3]

18

CHAPTER 3. FOUNDATIONS

Chapter 4

Methodology
A Systematic Literature
Review

This thesis is set out to investigate and analyse the aspect of organization
of teams in software projects. The information about the organization of
development teams can be found described in the literature in the form of
research reports. The aim is to use these reports to develop a model for
organizing software development teams. This model can be used by new,
inexperienced teams or matured ones, which seek better mechanisms for
organizing themselves.

The evidence presented thus far in the literature is based on single
experience reports of development teams working in a project or as part
of a software company. These studies mostly investigate different aspects
of software development processes and methods. Although the team itself
may not have been the object of research, reliable knowledge about its
organization can still be found in these reports.

Despite the considerable amount of such publications, the present under-
standing of software teams’ organizational practices is limited. Furthermore,
there is little or no systematic examination of development teams in
general, or of their organizational practices in particular, that explores the
generalizability of any findings from these reports. The model which this
thesis seeks to build relies on successful practices of development teams,
especially on those that other teams can benefit from. Thus it is necessary
to identify and analyse studies on the organization of software development
teams, with the aim to find recurring successful applications of tools,
techniques or processes that enable a better communication, coordination
and self-organization for a team.

To identify existing evidence about organizational practices of develop-
ment teams, a Systematic Literature Review (henceforth referred as SLR) is

19

20 CHAPTER 4. METHODOLOGY: A SLR

conducted as proposed by Kitchenham et al. [3]. The aim of the SLR is to
gain an overview of these practices, which will be further analysed in order
to answer the research questions.

The following Sections describe the planning and execution phases of
the SLR for finding and extracting the information from relevant studies.
Furthermore, the methods for the data analysis are described in Section [£.4]

4.1 Planning Phase

Prior to conducting the SLR, it is necessary to develop a structure about how
the SLR is going to be conducted, what kind of literature should be included,
where to find the literature, etc. To answer such questions Kitchenham at
al. 3] suggest formulating a review protocol for developing a structured pre-
review plan. Moreover, the review protocol establishes some basic procedures
and activities to guide the reviewer in systematically extracting the needed
knowledge from the literature. In particular, the review protocol procedures
address concerns such as bias [3|. In this SLR, a potential source of bias is
the influence the single reviewer may have upon the selection of relevant
literature. However the risk can be controlled by following the review
protocol.

The rest of this subsection presents the steps of the planning phase for
developing the final review protocol. These steps are: definition of review
research questions (Subsection , database selection (Subsection ,
search string (Subsection as well as inclusion and exclusion criteria
(Subsection. The review protocol can also be found in the Appendix

4.1.1 Step 1: Research Questions

As already mentioned at the beginning of this chapter, this SLR is
exploratory in nature. The central goal is to identify relevant research with
focus in software development teams and the way they organize themselves.

Prior to formulating the research questions, it is necessary here to clarify
exactly what is meant by ‘organization of development teams’. Throughout
this thesis, the term organization will refer to the way a software development
team arranges, distributes and administers its work, people and activities.
Hence, a special interest lies in the team members’ roles, coordination and
communication practices, as well as shared tools or artifacts that have proved
to be useful to teams.

The literature search should reveal the studies which report evidence
of these aspects of development teams’ organization. Furthermore, the
structures identified in such studies will be later analyzed to determine
general structures which represent recurring patterns. First, they should
highlight the ultimate recurrent characteristics of teams’ organization and
second, make adjustable ones evident. These characteristics will in turn serve

4.1. PLANNING PHASE 21

as a starting point for building the model for the organization of software
development teams. Consequently, this SLR formulates the first research
question as follows:

SLR-RQ1: What development team organisational structures exist in
software development?

Furthermore, the evidence extracted from current literature should
provide insight into the actual practices established for managing the aspects
of organization inside a team. Specifically, this SLR gathers practices
about the following organizational aspects: communication, coordination,
collaboration and decision-making. Therefore, the second research question
this SLR addresses is the following:

SLR-RQ2: What are the practices for the organization of development
teams?

4.1.2 Step 2: Database Selection

The literature in this review was drawn from five main sources: Google
Scholar, IEEE, ACM, ScienceDirect, SpringerLink. The first four are also
listed in Kitchenham et al. |3] as electronic sources of relevance to Software
Engineering, whereas SpringerLink is suggested for journals from Empirical
Software Engineering and Springer Conference Proceedings.

4.1.3 Step 3: Search String

An SLR provides a method for identifying and extracting from literature the
relevant research to a particular research topic of interest. In this thesis, the
SLR addresses two research questions regarding the organizational aspects
of software development teams. This is achieved by using a clear search
strategy, which includes a set of search terms or a search string, which is
used to filter the relevant studies from the databases. Thus, it is important
to build a search string that addresses the SLR’s research questions in such
a way, that it neither returns too many non-relevant studies nor excludes
relevant ones [51].

To support building a strong and representative search string, a set
of keywords was derived from the research questions. The first and most
important keywords are:

keywords set = {development, team, structure, organization}.

The set was further extended by terms such as synonyms, so that they
cover and are consistent with the terminology used in software development
publications. For example, a synonym of the term organization often used
in the research literature in the context of teams is the term structure. As a
result, the synonym structure was added to the keywords set.

As previously mentioned in Subsection [£.I.I} coordination and com-
munication practices are of particular interest for this SLR, as they

22 CHAPTER 4. METHODOLOGY: A SLR

describe important aspects of organization and information flow inside
the organizational structure of a team. Having said that, the key words
coordination and communication were also added to the set.

keywords set = {development, team, structure, organization, coordina-
tion, communication }.

After that, the set was converted into a boolean expression by using the
boolean operators AND and OR. The operator AND was used to connect
words that, at any case, should be present in the literature, whereas OR links
synonyms, which represent the same terms and concepts in the terminology
of software development literature. By applying the boolean operators, the
set of keywords is transformed into the following search string:

Search-string = development AND team AND (structure OR organization
OR coordination OR communication)

Next, this expression was tested in all digital libraries mentioned in the
previous section, from which the literature was going to be extracted. The
evaluation showed that the keyword development is used in a more general
context than just the software development. Considering the titles from
the first and second pages of results confirmed that. Some of the results
described project environments not from the field of software development.
To prevent that, the expression was extended with the keyword software.

Search-string = software AND development AND team AND (structure
OR organization OR coordination OR communication)

Moreover, the goal of this thesis is to analyse the team structures with
regard to their usage within software development contexts which implement
agile, traditional or hybrid software development methods. Consequently,
the search string was adjusted accordingly to also target experience reports
from these development environments. The final version of the search string
is shown below.

Search-string = (agile OR ’traditional software development’ OR plan-
driven OR hybrid) AND (software OR development) AND team AND
(structure OR organization OR coordination OR communication)

Finally, the research string was adjusted to fit each digital library’s
advanced search syntax.

4.1.4 Step 4: Inclusion and Exclusion Criteria

For controlling selection bias, Kitchenham et al. 3] suggest to determine
study selection criteria. The criteria should guide the reviewer during
the execution in determining which studies are going to be included in or
excluded from the systematic review. The literature inclusion and exclusion
criteria for this review are shown in Table [£1] and Table Inclusion
criteria IC1 to IC3, as well as exclusion criteria EC1 to EC3, were formulated
alongside the research questions and the search string described above. They
were then evaluated on the database results from the search string test trials.

4.2. EXECUTION PHASE 23

No. Formulation
IC1 The paper or article describes team organisation structures.
1C2 The paper or article describes teams which implement principles

of agile, traditional or hybrid approaches in their software
development processes.

1C3 The paper or article reports a case study of an agile, traditional
or hybrid software development approach, where the organisation
of teams is discussed.

Table 4.1: Inclusion criteria

One of the goals of this thesis is to identify team practices from real life
software development settings, such as actual software development projects
or team descriptions inside a software development company. In such cases,
the studied teams are composed of professional software developers and
represent a mature software development environment. However, at the
beginning of the execution phase, it was noticed that a considerable number
of papers, which fulfilled the IC1 to IC3 and not the EC1 to EC3, reported
experimental studies like pilot projects or simulated student projects in a
controlled academic setting. In contrast to the professional environments of
software development, such experimental studies have the disadvantage that
they are simulated and controlled by the experimenter and can, therefore,
be biased. Feldt et al. [27]’s comment on student-based experiments suggest
that the difference ‘in skill and motivation relative to the professionals’ poses
a threat to the validity of these experiments and further state that ‘sampling
from the same population that one aims to generalize to reduces threats to
validity’.

Hence, a fourth criterion was added to the list of exclusion criteria and
is presented in Table as EC4. This change was advised with Kitchenham
et al. |3] on study selection, which states that the selection criteria should
be retained during the protocol definition, although their redefinition during
the search process is not prohibited.

4.2 Execution Phase

The review execution started after the review protocol and especially after
the steps 1 to 4 as described in subsections to above were
consolidated. The search string was used in each of the databases to retrieve
relevant literature.

Firstly, the literature selection was based only on the information given
from the title and by applying the inclusion and exclusion criteria. The
selection based on only the titles yielded in total 539 articles. Furthermore,
37 duplicate studies were in total identified and removed.

24 CHAPTER 4. METHODOLOGY: A SLR
No. Formulation
EC1 The paper or article reports a team organisation practice not from
a software development setting.
EC2 The paper or article is written neither in German nor in English.
EC3 The paper or article is not subject to peer-review for conference
proceedings or for publishing in a journal.
EC4 The paper or article reports a team organisation practice in an

educational environment with student teams or a pilot study or
project.

Table 4.2: Exclusion criteria

Secondly, the title, keywords and the abstract of the literature were read
cautiously to perform a second selection, which resulted in 217 relevant titles.
Moreover, this step provided more context for each study and further allowed
the usage of all the inclusion and exclusion criteria, based on the information
on the study contribution described in the abstract.

Finally, the remaining literature was selected based on the content of the
full text. This step defined the set of the most relevant studies for the review,
which resulted in 53 relevant studies. An overview of the selected literature
on each of these steps is found in Table [4.3]

Database Literature = Duplicates Literature Literature
selected selected selected
based on based based on
title on Title, Content

Keywords
and Abstract

IEEE 247 0 92 18

Google 106 20 49 15

Scholar

ACM 72 14 36 10

Science 32 1 4 3

Direct

SpringerLink 82 7 38 7

Total 539 37 219 53

Table 4.3: Overview of extracted literature for each database in each step

4.3. DATA COLLECTION 25

4.3 Data Collection

The systematic search and selection of relevant literature, described in
the previous sections of this chapter, yielded 53 relevant primary studies.
Different studies, which can be selected as part of a SLR, do not and cannot
report the findings in the same way. This was the case in the resulting studies
selected for this SLR. The reason for this is the fact that relatively few
studies have concentrated their research on the organization of development
teams. Still, organizational aspects of development teams can be found in
many different types of studies, which investigate other aspects of software
development teams, such as team management, meetings, information flow,
challenges in collaboration or coordination, etc. Even though their focus
lies elsewhere, these studies manage to report enough information about the
organizational aspects of the software project teams.

To obtain the knowledge from the selected primary studies, it is required
to formulate a data extraction strategy. Kitchenham et al. [3] suggest for this
objective to design data extraction forms, which should aid the reviewer in
accurately recording the information obtained from the selected literature.
Similar to the process of defining the search string, data extraction forms
should be built in such a way that they facilitate the collection of the relevant
information which is needed to address the review research questions. The
data extraction form of this SLR is built to facilitate the gathering of the
information about development teams’ organizational aspects as presented
and defined in the previous chapter in Section

The aspects of teams’ organization were included in a first version of the
data extraction form. This first version was then further improved during
the piloting of the search string and the selection criteria. The final version
of the data extraction form can be found in the Appendix [B]in Table
It is important to emphasize once again that, because the selected relevant
literature represented a set of inhomogeneous study types, they do not report
the information about teams’ organization in the same way. Thus, some data
items in the data extraction form may be relevant to some studies, but not to
others. These items are marked with an asterisk (*), which should indicate
that the information may not have been reported in some studies.

4.4 Data Analysis

There were 53 primary studies identified during the execution of this SLR.
This literature presents a heterogeneous set of studies as it included single
case, multiple case, mixed-method studies as well as experience reports.
Figure presents an overview of the methods of data collection throughout
the primary studies. Thus, for the synthesis of inhomogeneous and mixed-
method studies this thesis uses a qualitative approach as suggested by Wohlin

26 CHAPTER 4. METHODOLOGY: A SLR

et al. |101, p. 50-51]. They further present several synthesis methods for
summarizing qualitative studies with inhomogeneous empirical evidence.

single case holistic study
2.6%

interpretative case study
2.6%

longitudinal case study
2.6%

exploratory case study

experience report

28.9%

case study

34.2%

mixed-method study
7.9%

multiple case study

15.8%

Figure 4.1: Method of data collection in primary studies

Due to the mixed nature of the selected primary studies regarding
their type and the inconsistency of the data extracted from them, this
thesis chooses to analyze the data by conducting a thematic analysis. To
answer the research questions, this thesis looks for recurring patterns among
the reported team organization structures and practices to identify general
team structures. Thus, thematic analysis is used in this case, as it is the
method that identifies, analyzes and reports such patterns. The thematic
analysis organizes data in detail for further facilitating the interpretation
and identification of patterns.

Moreover, the guidelines to experimentation in Software Engineering
recommend that a sensitivity analysis should take place apart from the
synthesis method p. 51|. The sensitivity analysis should be able to
assess whether the results are consistent across different subsets of studies.
Subsets of studies can be formed by primary studies of a specific type, high
quality primary studies, or primary studies reporting complete and detailed
evidence. The results of this analysis are considered in this thesis when
reporting the limitations and threats to the validity of the findings of this
SLR.

Finally, this thesis presents the findings on organizational practices and
structures in a narrative synthesis. According to Cruzes and Dyba , the
narrative synthesis adopts a narrative description to summarize findings from
primary studies. This includes not only descriptions, but also comments
and interpretation of the evidence in order to increase transparency and

4.4. DATA ANALYSIS 27

trustworthiness. Based on that, during the data extraction phase of this
SLR, key evidence from each study is tabulated side by side with the key
aspects of teams’ organization. Furthermore, whenever possible, the team
structure is illustrated with a figure.

28

CHAPTER 4. METHODOLOGY: A SLR

Chapter 5
Findings

This chapter presents the results of the SLR regarding development teams’
organizational structures and practices. To better understand these results,
this chapter first gives an overview of the extracted data, by providing general
background information about the studies in section Section [5.2| reports
the results of the data analysis and answers the research questions of the
SLR about teams structures and practices, in subsections [5.2.1] and [5.2.2]
respectively.

5.1 Data Analysis

As already reported in the previous chapter (see Table , the selection of
the literature based on study content resulted in 53 relevant publications.
Because the team size is an important dimension when studying teams in
general, this thesis also gathered information on team sizes for each case
study found in the selected literature. The analysis of this data suggested
that almost half of the teams from the literature were part of a large-scale
environment. As shown in Figure [5.1] in about a quarter of the cases the
team size was small, whereas 15.2% of the studied teams were middle-sized.
In a notable number of the cases, the categorization to small, middle-sized
and large team was already given by the researchers, without mentioning a
concrete number of team members. Despite that, the collected data from
the rest of the studies suggested that small teams’ size ranged from 4 to
22 members, middle-sized teams had 15 to 50 members, whereas the size of
large teams varied from 28 to 400 members. Table [5.1] provides an overview
of the reported team sizes alongside the respective publication.

Regarding the software development method used in each case, it
was widely reported that project teams implemented agile principles and
development approaches. This trend towards more research on agile methods
was expected, considering the fact that almost all selected studies were
conducted after the Agile Manifesto in 2001, as shown in Figure In spite

29

30

no information
4.5%

small
31.8%

middle

15.2%

CHAPTER 5. FINDINGS

Figure 5.1: Project team sizes

of the fact that this thesis did not analyze in detail the reported development
methods, it can be stated that, overall, the software development projects
are still in an agile transition.

Small Middle-sized Large
Size Literature Size Literature Size Literature
4-5 15 22 - 48
6 16 - 26 42
8 27 60
8-9 39 100
8-11 50 120 - 176
4-15 144, 150, 200
15 300
22 400

GIT

no information

EEEEE

[2 0 o 0 3

Table 5.1: Overview of the team size reported in the selected literature. The
cases where a size range is given were multiple case studies.

5.2 Research Questions

This section presents the results and analysis of the data collected from
the literature selected for the SLR. These are, in turn, used to answer the
research questions presented at the beginning of this thesis and described
in detail in Subsection [f.I.I] The research questions are addressed here
separately in the following subsections. Subsection[5.2.1|presents the analysis

5.2. RESEARCH QUESTIONS 31

10
8

8

—

©

(0] 6

>

S 6

o

S

C

3 a4

3 3 333 3

w

—

(0]

o

[

o

Publication year

Figure 5.2: Chronological distribution of selected literature

and the synthesis of the findings about the structures of development teams.
This is followed by the identification and analysis of the reported practices
for the organization of development teams, introduced in Subsection

5.2.1 RQ1l: What development team organizational struc-
tures exist in software development?

In a significant amount of studies, the description of the development settings
was detailed enough to allow an accurate extraction of the organizational
structure for each team. A rather small number of cases, however, already
included in their report a visualized structure of the teams under their
investigation. All these structures underwent a thematic analysis in order
to identify patterns which development teams recurrently use and benefit
from. The results of the analysis are provided in this thesis as a narrative
synthesis. To identify themes, the structures and the respective notes were
compared in detail and finally organized in three groups; small, middle-sized
and large teams, based on team size.

Small Teams

The analysis identified 21 cases of small project teams from 14 different
publications. In 8 of these cases, the researchers reported the use of agile

methods , , , , whereas 3 cases implemented a
traditional software development approach and the other 10

represented a combination of development approaches , ,

32 CHAPTER 5. FINDINGS

26, 119, 138]. Figures , and below show typical development team
organizational arrangements for traditional, agile and hybrid development
approaches respectively.

Traditional team. By observing the traditional team structure in
Figure[5.3] the first thing that can be noticed is its hierarchical structure. At
the top of the structure these teams had a management level visible, whereas
at the bottom, the teams were functional and worked in silos. Furthermore,
the project and product manager as well as the team leaders were part of the
management team. These roles were typically assigned to senior members
of the teams or of the organization. Another important observation is the
involvement of the customer and stakeholders. In traditional settings, they
only communicated with the managers and were involved in the development
process only at the beginning and the end of the project.

Agile team. The typical agile team was a scrum team. Almost all
the teams which reported to use agile methods implemented as well the
Scrum framework as part of their development process. However, some
studies reported using also another methodology in addition to scrum such
as eXtreme Programming |18, [19] or a tailored version of scrum [25|. Two
other publications reported that the teams they investigated used only
eXtreme Programming [99, 43|, in a co-located and globally distributed team
respectively. This thesis did not investigate in detail the actual software
development methods, processes or frameworks used by the teams, because
it would require an in-depth analysis, which is out of the scope of this
thesis. Nevertheless, the collected data about each team suggested secondary
findings which are presented at the end of this subsection (see Section[5.2.1]).

Because the majority of publications reporting the implementation of
agile principles used the Scrum framework, the team structure in this case
was similar to the arrangement of a scrum team. This arrangement is
illustrated in Figure The agile scrum team consisted of a scrum master,
a product owner and the developers. External developers or consultants
were also hired occasionally as outsourced workforce to support the lack
of resources in the core project team or for reducing project costs [25] |46].
Nevertheless, the teams were cross-functional with a broad range of technical
skill sets. Furthermore, in some projects a project manager role was visible
as well [19], and the overall team structure was similar to the arrangement
presented in Figure

This arrangement (see Figure showed up from the cases which
implemented eXtreme Programming for the development. The developers
in these teams practiced pair programming when working on their tasks.
Vidgen and Wang [99] reported for one of their cases, that developers,
the project manager and the customer closely worked together to address
the technical and business complexity of the product. This suggested that
developers were involved in the management activities and held as well direct
and frequent contact with the customer. They further practiced task self-

5.2. RESEARCH QUESTIONS 33

assignment and used pairing, especially for complex tasks and those requiring
specific knowledge.

Hybrid team. A synthesized arrangement of these teams is illustrated in
Figure .6l By comparing the team arrangements and descriptions for the
thematic analysis, the cases categorized as hybrid teams not only reported
the usage of hybrid development methods, but also a combination of the
autocratic and decentralized management style. For instance, when using
the scrum framework, it was often the case that the roles of scrum master
and product owner were assigned to the most experienced team members or
senior developers. In the cases which described a transition from traditional
to agile methodology, these were project and product manager. Moreover,
this way of role assignment is typical for autocratic management style, also
seen in the traditional team arrangements |[2].

In addition to that, it was noted that this allocation separated the team
into management and development. While the management was rather
traditional autocratic, the organization of development team was informal
and resembled the cross-functional teams in composition. This is mostly
because the development used agile development or a combination of agile
principles with traditional methods, such as water-scrum-fall, Scrum-Xp-
waterfall delivery, Scrum-XP-Unified proces, in [46, respectively.
Different from agile teams, hybrid teams assigned roles to each individual in
the development team.

AR

Management

‘ ‘ collaborate .
,\ ,\

Customer Project Manager Product Manager

(Stakeholder)
report to

A A LA

Architect Lead Testers Lead Developers Lead

N .

Architects Testers Developers

\‘/

External Experts

Figure 5.3: Common organizational structure for small development teams
implementing software by following a traditional software development
approach

34 CHAPTER 5. FINDINGS

A A

Scrum Master Product Owner
External
Developers
Developers

Figure 5.4: Common organizational structure for small development teams
in an agile software development project

- Project Manager

- Development Manager
- Technical Lead

- Customer

Project Management Team

£,

Development
Lead

External
Developers

Developers

Figure 5.5: Organizational structure for small development teams
implementing eXtreme Programming

Middle-sized and Large Teams

In total, 33 case studies reported large teams, whereas only 11 project
cases had middle-sized teams. Figures and illustrate synthesized
team arrangements for both middle-sized and large teams from the selected
literature. Middle-sized and large teams are reported here together, because
overall, they showed similar organizational characteristics. In both middle-
sized and large team structures, there were clearly two organizational levels

5.2. RESEARCH QUESTIONS 35

Customer
(Stakeholders)

Scrum Master
Project Manager

Product, Business Owner
Product Manager

Testers

O

Pair A Architects

Quality Assurance

Figure 5.6: Typical organizational structure for small development teams
implementing both traditional and agile principles

visible: the team level or the horizontal organizational level, and the
management level, or the vertical organizational level. This can be also
observed in the Figures and where the development teams are
placed at the bottom of the structure, whereas the top level is occupied
by management roles or teams.

Development teams were part of the horizontal organizational level. This
was the lowest level of the project organization. The structure inside each
team was similar to the one presented in Figure [5.6] where the inter-team
communication and coordination was mostly controlled by team leaders or

team coordinators , . Furthermore, the development teams

were cross-functional and included people with different areas of expertise
or roles , , , . Regardless of the fact that these teams
appeared to be cross-functional and agile, when working for a long time in the
same project, they tended to specialize in a single software component ,

feature , or module , and therefore, lost their

cross-functionality.

In addition, project teams arranged in the center of all the development
teams, another team, which mostly handled coordination aspects and had
decision-making authority. This team was named ‘central team’ in the cases

36 CHAPTER 5. FINDINGS

presented by Bick et al. |7, [8], ‘project management team’ by Layman et
al. |43] and ‘core team’ by Hossain et al. |25, [92|. Even larger teams and
project cases had several management teams [80, 54|, such as; a ‘Central
Planning team’, a ‘Product Owner team’ and ‘Architectural Governance
team’, and ‘Bug Board’, ‘Architectural team’ and ‘Product Owners team’
respectively. However, due to this team’s managing role in the project, this
thesis refers to it as ‘project management team’. In some cases, members
of this team were people with typical management roles, such as project
manager or product manager |54, |32, 83, [30], as well as representatives
of the customer and stakeholders, such as domain experts |7, 80, 30| or
proxy customers [50, 71} |8 69]. These people held the control over the most
important decisions, such as plans, requirements, etc. A detailed overview
of the most common practices in both, the team and management level, is
presented in Section [5.2.2]

However, in agile or hybrid cases, this team was not directly visible and
the management of the project was handled here by coordinating rounds,
similar to Scrum of Scrums |95, |7, |8, 80, 71, 44, 32]. In these rounds,
representatives and leaders from all teams met regularly in order to discuss
issues and dependencies which development teams were facing. These rounds
also handled different planning topics |7} 73|, discussed requirements and
prepared them for backlogs |7, [80], assigned features to the teams |66, 49|,
tracked the project progress and overview, etc. Other participants were also
project and product managers, architects, quality assurance and customer
representatives, such as proxy customer or domain experts. Figures and
[5.§] provide an overview of the most common organizational structures for
middle-sized and large teams.

Other important insights regarding the organization structure of
development teams

Overall, the analysis of the data reported from the selected primary studies
suggested the following conclusions about team organizational structures:

o Software development methods used by development teams influence the
way these teams organize themselves.

For example, in a project team using traditional development methods
such as waterfall [30], team members work in silos with clearly defined
roles and are not aware of the dependencies between one another
and with other teams, because of the lack of frequent and direct
communication. The management of dependencies between work
entities is centralized at management and leader roles, which manage
the team based on a command and control style. On the other hand,
when a team applies agile principles, teams tend to be cross-functional
with no defined roles and have more freedom regarding decisions on

5.2. RESEARCH QUESTIONS 37

Project Manager
Chief Product Owner

A Product Backlog

Customers Product Owners
(Business Partners) [

report to

Product A Product A Product A
owner Scrum owner Scrum Manager, Project
master master Manager
Development Development Programmers
team team

Team Backlog
7~ ~\ ~ ~\ ~
UX Design Domain Experts Solutions Architects QA Developers

Figure 5.7: Summarized structure of middle-sized software development
teams

CHAPTER 5. FINDINGS

Management

2 &

Customer

coordinate

2

Chief Scrum Master Chief Scrum
Master
SoS
O=0
~ A Q[
8 rchitects
PO PO _ ¥ Development
O=0 .'\. o team .". PO
Development Development Development R ~h'|~,’/,\’.‘ Architect
team team team pohites \
Serum |
Master Developers
~ .
X\’.. Architect‘\/ Architect
"f\
~ Engineers

UX Design Domain Experts Solutions Architects QA Developers

Figure 5.8: Summarized structure of large software development teams

how to work, coordinate tasks and monitor dependencies for identifying
issues on time. Because agile principles put an emphasis to the
individuals, the management of such teams is based on leadership and
collaborations, where decisions are made by consensus.

While in traditional teams there is a clear difference between de-
velopment and management level, agile teams mostly do not show
any managerial roles, as management is a common responsibility of
the team. Furthermore, specific software development processes or
frameworks such as Scrum, eXtreme Programming etc. prescribe as
well practices to facilitate the team management. Examples of such
practices in Scrum are coordination meetings such as daily stand-ups
or sprint planning and in XP, pair programming for collaboration.
For multiple team systems such practices define and have an influence
especially in the organization at the team level.

e Project complexity, size and structure affects the overall team structure.

In a small project, there are little to no dependencies between teams
and the team size is proportional to that of the project. The latter was
also found by Keshta and Morgan . Especially in large and complex
systems, the product is mostly divided in features or modules, which

5.2. RESEARCH QUESTIONS 39

have often dependencies from one another |28, |4} 62, 42, 96| 7, |8, [54]
71, 73|. This division and their dependencies are also carried by the
teams when they are assigned to work on those features and modules.

o Team and project size define the practices for decision-making authority
and control.

As already stated above, the data from several publications |7, 4, |32,
95, 73| suggested that especially complex and large projects suffer from
issues related to dependencies in different parts of the product. To
coordinate and manage these issues is a challenge, that is why the
most complex and large projects and teams from the selected literature
centralized the decision-making authority and control to the project
management |7].

Bick et al [7] reported on five large-scale projects that suffered from the
same issues. All their cases implemented tailored Scrum at the team
levels and tailored Scrum of Scrums with decision-making authority
and control at the project management levels to facilitate coordination
of dependencies and work on multi team systems with up to 13 teams.
In their traditional case, centralizing the control at the management did
not solve such dependency issues; firstly, the management did not have
the required technical understanding to identify such problems and
secondly, the teams were not involved in the coordinating process in
order to help with their technical expertise. However, their other cases
where each team had the opportunity to collaborate with peers from
other teams were perceived as well-coordinated, because the members
had the freedom to exchange information and were more involved in
the overall organization.

Paasivaara and Lassenius [71], on the other hand, also reported a
similar team structure. Their project team worked in product areas
and applied Scrum of Scrums practices for coordination for each area.
The product development responsibility, and with that some control
over the project, was held by a product management team. In order
to not confine the overall project overview just at the area or feature
levels, the project started using communities of practices (CoPs), which
were open for the whole team to participate and contribute to. Such
communities seemed to increase collaboration and helped in quickly
identifying and resolving dependencies and issues. In this case, there
was much more freedom left to the teams regarding control over the
project status, coordination and communication.

Even small teams suffered from dependencies between product features
developed by different teams. Although the issues here were easier
to handle, especially for co-located teams, small distributed teams
were the most affected [18, |46]. Similar to the large projects,

40

CHAPTER 5. FINDINGS

a management role controlled the project and team progress and
facilitated coordination inside the team.

Teams constantly changed aspects of organization for their team with
better practices, mostly because of the challenges they face.

This was not only observed in well-established teams who sought an
agile transition (e.g. [10, [59]), but also in new project teams, in which
their current organizational arrangement did not satisfy the team’s
needs |71]. Also, the team organizational changes were necessary in the
case of project and team growth [96]. This finding is also supported
by previous research [23],92].

Managerial roles in traditional teams are typically assigned to the most
experienced or senior members of the team. The same is applied by
agile and hybrid teams. Furthermore, new agile roles are not fully
implemented as described in the corresponding guidelines. They are
often merged with old traditional managerial roles.

Consider, for example, the roles of Scrum Master and Product Owner
in an agile scrum team. In Scrum.org [85] and Scrum Guides [84],
the Scrum Master is defined as a coach and a leader that serves the
team and the Product Owner. Having said that, this role does not
correspond to the product manager role, who leads and manages the
team based on command and control principles. However, it was noted
that teams implementing the Scrum Framework, often assigned the
Scrum Master role to the most experienced team member (e.g. |4,
75]) or to the person, previously holding a manager role (e.g. |91, [32}
26|). This suggested that especially management roles from traditional
settings are translated into the agile coach and leader roles, almost
without changes in the occupation.

Given the findings described above, it can also be concluded that the
new agile positions are still occupied by the same people. (69, |57, |76,
71/

FEaxternal stakeholders, especially customers, were not always involved
wn the development process of agile cases.

While in traditional methods it is not necessary for customers and
external stakeholders to be part of the development process, agile
settings require from them constant feedback and direct communica-
tion, in order for the teams to quickly react to changes and problems
regarding requirements. In the project cases developing an in-house
product |96, 58, 34, 25| |76, |7, [8], where the requirements came directly
from within the project organization, that is, the organization itself was
the customer, development teams received frequent and direct feedback

5.2. RESEARCH QUESTIONS 41

on the product’s requirements. In these cases, the management of
requirements was the responsibility of one or more dedicated Product
Owners, which also comprised or were part the project management
team [7].

In cases of external customers, these were partly or not at all involved in
the development. Instead, they provided product specifications, plans
or regulatory documents [83] |94, [25]. Others delegated the dictation
to employees from their own organization or to representatives such as
proxy-customers [69, 50, |43} 71] or domain experts |8, 30, 91, [66].

5.2.2 RQ2: What are the practices for the organization of
development teams?

To answer this question, data from the selected studies underwent a thematic
analysis. The analysis identified patterns in the organizational practices
of development teams, which are introduced and described in detail in the
following subsections. This thesis found and grouped the following practices:
communication, coordination, collaboration and decision-making practices.

Communication

This thesis identified several communication practices used for different
purposes, depending on what is being communicated. For example,
team members used direct communication to exchange thoughts and ideas
about their tasks [28, 95|. Further, communication with the purpose of
coordination of work happened mostly in meetings, virtually through emails
or chats or in the written form through documents. Table presents an
overview of communication practices grouped by the type of communication:
spoken, written or visual.

One or more of the practices listed in Table found usage in the
following scenarios: one-on-one encounters or conversations, during meetings
or gatherings, during collaboration sessions between team members and for
the communication through documents.

One-on-one communication. This is the most common form of spoken
and written communication, which takes place in the everyday work between
two team members. Direct and informal communication forms are preferred
in this case. Furthermore, the one-on-one communication is a practice
represented by ad-hoc conversations [66, 34, 59|, face-to-face or in the
written form, for the following reasons: for knowledge sharing |58, |32} 26|
57, [71], coordination of work [71, |10, 28, |8, clarification of dependencies
and issues [94, 43, (71 91], receiving and giving feedback as well as for
socializing |26| [75]. Depending on the team setting, there is reported to
be more face-to-face and direct communication in co-located teams [28|
50, 43|, whereas in distributed cases, team members depend on virtual

CHAPTER 5. FINDINGS

Communication Practices

face-to-face

ad-hoc conversations

online conference (call or video call)

spoken)
meetings
socializing, on-site visits
feedback

open office landscape, co-location

emails
instant messages, chats
wiki
spreadsheets, word documents, quality interface
requirements and product specification
written plans, release schedule
guidelines, regulations, standards
epics, features
user stories, tasks
acceptance criteria, test cases

behaviour-driven scenarios

project and team progress dashboards

visual physical and electronic whiteboards
backlogs (per team, sprint, project)
desktop sharing

Table 5.2: Overview of communication practices

5.2. RESEARCH QUESTIONS 43

communication [18| |34, 25, 46]. The virtual communication happens in
the written form through email, instant messages, chats etc. and as spoken
communication through phone or video calls. In both cases, communication
between the involved parties is further supported by other tools such as
documents containing figures, diagrams, plans, etc. or desktop-sharing in
the case of virtual conversations.

Communication during meetings or gatherings. Typical communication
forms during meetings are spoken and visual communication. This is the
form of spoken communication in group, where more than two people are
involved in the conversation. In this case, depending on the type of meeting,
the participants use communication to: coordinate work in general (who
does what), to identify dependencies, issues, impediments, etc., to discuss
solutions [95|, [87, 65, 66|, to share own thoughts, ideas, suggestions for
improvements |32], to ask for or to give help, to give feedback [26] as well as
to share knowledge and expertise |71} 134]. During meetings, it is common to
sit together in one Table or be in the same room [58, 19, 61]. Thus, in these
cases the communication happens orally. In the case that participants are not
co-located, the communication is facilitated by online conferences through
phone or video calls [83, |44} 40, 65| (18, 75, [50, 43]. Furthermore, visual
communication practices such as desktop sharing, physical or electronic
whiteboards |4, (18, [34} |43} [80], progress dashboards [54, |75, 43| (96, [28]
are also commonly used by teams to facilitate the coordination process and
discussions during meetings [99} |18, 34].

Communication during collaboration. This is as well a form of spoken,
written and visual communication in group, used indirectly in collaboration
sessions between two or more people who work on the same task. In this
case, the same communication practices as in one-on-on communication
and meetings can be used, which should facilitate the activity of working
together. A typical example is the collaboration during pair programming |8,
40, 62, 58, |19, |34], where two developers work together on a common
assignment. Communication in the context of collaboration is as well used
for knowledge sharing, giving and getting feedback or for decision making,
e.g. making decisions by consensus [79]. The communication practices
described above should further support actual collaboration activities. These
are described in the following Subsection and summarized in Table

Communication through documents. The practice of communicating
through documents is a formal form of communication and it is the most
common form of written communication. In this case, code, artefacts
and all the other documents generated during the project duration such
as guidelines, regulations, standards, specification are used as a means of
communication and documentation of project status and knowledge. |66, 57,
80, 71,94} 4, |43], 79, 49] Among the most used artefacts are those representing
customers’ requirements, such as backlogs, epics, user stories, tasks [4} 54}
34, 29, 44|, but also team progress boards for tracking team and project

44 CHAPTER 5. FINDINGS

status, designs, acceptance tests, etc. Furthermore, most used documents
include guidelines, regulations, standards, specifications, templates, notes,
plans etc.

Overall, the analysis of all communication practices suggested that writ-
ten and spoken communication are the most common form of communication
among teams. Because communication is an essential part of work, its usage
is found to accompany and support other team organizational aspects as
well. This will be further elaborated in the following subsections about
coordination, collaboration and decision-making.

Coordination

Software development teams use different coordination practices to co-
ordinate their work and identify issues and dependencies. An in-depth
analysis of the identified coordination practices suggested a categorization in
coordination practices during meetings, through boundary spanners as well
as through boundary objects. These practices are described below in details.
Table shows an overview of concrete practices from each category.

Meetings. Meetings are the most common practice for team coordination,
in both horizontal and vertical level. Meetings are a way each team
member can get an overview of the project status, of team progress
and for coordinating the work to be done with other team members.
Further, meetings give each participant the chance to get to know their
peers’ responsibilities and knowledge, which in turn, contributes to the
identification of dependencies, issues, impediments, questions, which can
then in the same place be addressed and clarified. This raises further the need
for discussion, where team members can give their feedback, perspectives,
ideas and make suggestions for solutions, improvements, plans and strategies.

Boundary spanners. A boundary spanner is a person who acts as a
facilitator of communication and of work coordination inside the team or
between teams, in order to protect their team from interrupts. In small
development settings, especially in those implementing agile practices, this
role is almost invisible [18, |26, [99]. Because agile practices require more
direct communication, teams directly contact one another |58, [26] 19, |43
95, 28] or bring the issue up in the next meeting for clarification |50]. In less
traditional settings, this role is occupied mostly by management roles such
as the project or product manager [49, 73, [8].

In the cases where teams are not so close to one another, the boundary
spanner is represented by one or more team representatives [95] 94, |69} 4. |44],
who can be assigned by the teams or is a rotating role |71]. This role often
participates in the meetings with teams in the same level of the organization.
These meetings are mostly used to identify and address dependencies and
issues, for planning and for sharing of knowledge and expertise. It is common
practice that, in meetings with managerial nature, the only participants are

5.2. RESEARCH QUESTIONS 45

Coordination Practices
planning (project, sprint, iteration, release, monthly)
meetings daily stand-ups, daily meeting

Scrum of Scrums

project increment, requirements, user stories workshop
sprint review, retrospective
refinement sessions

user stories reviews
communities of practice
semi-structured meetings
emergency team meetings
status and hand-over meetings
demos

task discussions

direct coordination

boundary spanner

manager roles (project, product, technical, programme)
domain /regulatory expert

product owner (CPOs, domain PO, business owner)
scrum master

team representatives, rotated or not

proxy customer

team leader

boundary object

project dashboards

backlogs (team, enterprise, product)
kanban board

quality interface

documents (requirements, product specification, regula-
tions)

epics, features

user stories

acceptance criteria, test cases

tasks

wiki

repository

online project management program

Table 5.3: Overview of coordination practices

46 CHAPTER 5. FINDINGS

those from each team’s management roles, such as product manager, scrum
master, product owner etc.

The communication with the customer happens as well often through a
boundary spanner |66, 18, |69} 70, 50|, who may be a dedicated person like a
proxy customer or domain expert from within customers’ organization, or a
person actually attached to the team, like the product owner.

Boundary objects. Boundary objects are part of the written com-
munication. They are used for gathering requirements, tracking project
progress, documenting knowledge and expertise, coordinating work through
regulations, guidelines; or they can be interfaces or tools, such as bug
tracking systems, wikis or CVSH repositories to handle the organization and
communication during coordination activities. The most common boundary
objects used for product requirements are items such as epics, user stories,
tasks, acceptance criteria etc. and backlogs at different levels, such as
product or enterprise backlog, sprint, release, dedicated team backlog etc.
The documents that can be mentioned here include regulations, guidelines,
standards, plans and other files such as meetings recordings, group chats or
wiki pages.

It is evident that communication practices reappear and are part of the
coordination practices. For example, meetings are the events where a large
amount of group communication happens and with that also the organization
of work. Further, meetings serve as a common practice for the coordination
at both organizational levels, at team level as well as at the management
level. Nevertheless, the participation of all the team members is high for
meetings [81, 31, 94| at the lower levels of the organization, that is, at the
team level. Participants of meetings at the management level are mostly only
management or leader roles, such as team leaders or team managers, while
other team representatives are rarely asked to join [57} 4]. In the management
level, the team representatives serve as boundary spanners, which handle the
discussions in the name of their team. Thus, the lines of communication are
extended.

Moreover, almost all the cases included in this SLR report about the
usage of written forms of requirements or indirect communication, such
as backlog, epics, user stories, etc. It can be clearly stated that these
boundary objects serve as a formal way of communication and coordination
with stakeholders at the management level. However, the same boundary
objects are used also at the team level.

Collaboration

Both communication and coordination support collaboration practices. The
success of communication or coordination practices is reported to affect

LConcurrent Versions Systems

5.2. RESEARCH QUESTIONS 47

positively the collaboration. For instance, Noordeloos et al. |65] reported
that frequent communication between team members, shorter lines of
communication with the customer, as well as their direct involvement in
planning, prioritization and daily stand-up meetings promoted overall a
better collaboration.

The thematic analysis of the collaboration practices extracted form
the literature resulted four themes: intra-team, inter-team, collaboration
between development teams and management teams and collaboration with
external stakeholders. The most common practices per each theme are listed

in Table 5.4l

Collaboration Practices

working in pairs
communities of practice
learning, knowledge sharing
planning (work)
intra-team backlogs (local, sprint)
ad-hoc conversations, socializing
support, assistance and help
feedback, issues
discussion of issues, improvements, progress,
ideas, dependencies

co-location, shared office

coordination meetings (SoS, status and hand-over,
demos, reviews, dailies, communities of practice,
planning)

inter-team retrospectives

team representatives

learning, knowledge sharing

task swap or responsibility rotation

shared collaboration tools

shared team members

requirements (clarification, prioritization, plan-
ning,

t d t . . .
cam and managemen backlogs (product, sprint, team, iteration)

project status meetings

feedback, issues, improvements, suggestions,
ideas, dependencies

Table 5.4: Overview of collaboration practices

Intra-team collaboration is the collaboration happening between team
members of the same team. The most reported practices in this case
were: co-located or remote pair programming, sitting together or co-
location, collective discussions at workplace or during meetings, workshops

48 CHAPTER 5. FINDINGS

for knowledge-sharing, as well as ad-hoc encounters and socializing |8, |19}
99, |66).

Inter-team collaboration is practiced by members of different teams.
The inter-team collaboration was found in: common coordination meetings,
such as Scrum of Scrums [92 91| and project management meetings [95],
inter-team technical meetings and communities of practice (CoP) |71} |96].
In the coordination meetings collaboration was practiced for identifying
dependencies and issues or during the discussion of solutions and decisions.
However, only in a few studies, team members had the chance to directly
participate in these meetings. Instead, boundary spanners such as team
representatives or leaders with managerial role took part in such meetings
and therefore, controlled the inter-team collaboration. Regarding the inter-
team technical meetings, these were mostly organized by technical leaders
and handled a specific technical topic. Communities of practice were rarely
used. They were self-organized by the development teams at the lower
levels of the organization and also handled a specific topic. Furthermore,
communities of practice were reported to be held irregularly or on an as-
needed basis, whereas technical inter-team meetings took place regularly.
Especially in large-scale settings, technical inter-team meetings had a crucial
role in coordinating work between dependent teams. All in all, collaboration
during coordination meetings was the most reported form of inter-team
collaboration, followed by inter-team technical meetings and communities
of practice.

Collaboration between development teams and management teams. In the
project cases where the control of the project is centered at the management
team [49, 94, 8|, there was little to no direct collaboration between the team
members and the management team [26, 19]. The collaboration happened
through the boundary spanner or the boundary objects, discussed above
in the coordination practices. There were, however, cases where these
coordination rounds were more open and transparent, giving each team the
chance to participate in the discussion. Common practices worth mentioning
were: firstly, the whole team could participate |28| 71| and secondly, teams
elected representatives who participated in rotation or not |65} 44].

Collaboration with external stakeholders (especially customers or their
representatives). Amongst most common practices of collaboration with
external stakeholders were boundary spanners, such as proxy customers |50,
43|, domain experts from customers’ organization, external domain experts,
product owners, project or product managers, etc. 8, |30, 91, 66| Boundary
objects describing raw product and business requirements were another
commonly used practice in these cases. Examples of boundary objects
were documents containing high level requirements, such as requirements
specifications and whole descriptions of features or modules.

5.2. RESEARCH QUESTIONS 49

Decision-making and control

For the thematic analysis, all the identified practices regarding decision-
making and control were considered and compared to find themes. The
analysis made evident three groups for these practices: firstly, practices
where the decisions and control were held by the teams, secondly, practices
that indicated control and decision-making authority at the management
level. Finally, the third group were practices that showed some control and
decision-making authority lying at the stakeholders and customers, mostly
about requirements. In Table these groups are referred to as decision-
making and control at the team level, at the management level (including
customers and stakeholders) respectively. Further, the Table displays a
summary of the most common practices found for each group.

At the team level. Decision-making authority and control at the team
level can be understood as the freedom of each development team to decide
about different organizational aspects regarding daily work. The most
common practices here were: choosing own coordination activities [59],
such as meetings, choosing own tools for collaboration, maintaining local
backlog [44], estimation and self-assignment of tasks according to own
interests, learning, task swap and collaboration with peers for knowledge
sharing, etc. |10, |31} 83| Less common was the practice of directly involving
the team in important decision rounds. In such cases, team members or
their representatives were invited to share their perspective, give feedback
and propose solutions |57, 29, 28].

At the management level. The most common decision-making and control
practices were found to be held by the management. The management
was composed here by roles, such as boundary spanners [96, 28, 40|, as
well as a dedicated project management team, which controlled budget and
resources|81} 26, 49|. The dedicated management team was mostly visible in
the cases of an in-house developed product [8] or in very large projects, as
well as in the cases where the customer was not directly or only sporadically
involved in the development [30]. In the first and latter cases, this team
controlled also the project scope, which is normally managed by the customer
and stakeholders.

However, in some cases, even though the management had the respon-
sibility to keep track of dependencies between teams, it failed to do so,
because of the lack of competence to identify such issues [§]. As a result,
development teams were isolated from one another, worked on tasks assigned
by the management and were not able to resolve issues on their own. It can
be concluded that, considering these practices as well as the structures of
middle-sized and large project teams (see Fig. and , the authority
of the management clearly stands out.

At customer and stakeholders. As already stated above, important
decisions about requirements were held by the customer. Whether the

50

CHAPTER 5. FINDINGS

Decision-making and
Control

Practices Literature

at team level

own activities

team backlog

estimation, prioritization, time
task swap, assignment

participation in decision rounds, represen-
tatives

planning
learning and knowledge sharing
suggestions, solutions, improvements

communication with other teams and
customer

autonomous

at management level

product, team backlog

prioritization, planning, work assignment
resources, people

communication of decisions, information
coordination and resolving of dependen-
cies, issues

collaboration and communication with

customer, gathering and formulation of
requirements

guidelines, regulation, standards

project scope, status, overview, progress,
quality

centralized to different manager roles

at customer

requirements dictation, selection, prioriti-
zation

quality check
project scope
monitoring project progress

delegated to proxy-customers, domain
experts, customers’ teams

Table 5.5: Overview of practices for decision-making and control

5.2. RESEARCH QUESTIONS ol

customer was directly involved in the development process [99, [25, 81] or
not, the control over requirements dictation [99|, formulation, prioritization
was held by them or their representatives, such as proxy customers [50, 43|
71| or domain experts from customers’ organization.

52

CHAPTER 5. FINDINGS

Chapter 6

Discussion

One of the main goals of this thesis was the identification of practices for
organizing development teams. The in-depth analysis of the findings from 53
primary studies highlighted team organizational structures for small, middle-
sized and large development teams. Furthermore, this thesis found that these
structures were supported by practices for organizational aspects such as
communication, coordination, collaboration and decision-making authority.

This chapter provides a discussion and interpretation of the findings
presented in the previous chapter. Section [6.1] discusses findings regarding
team organizational structures and practices. Next, these findings are
interpreted and compared with results from the current literature on software
development teams. Finally, the discussion of limitations, threats to validity
as well as generalizability of results concludes this chapter.

6.1 Organizational team structures and practices

The first research question in this study was to identify what organizational
structures are used by software development teams. This thesis identified
three groups of development team structures: small, middle-sized and
large team structures. For small teams, there were evident three types
of organizational structures: traditional, agile and hybrid team structures
(see also Figures and and respectively). Cases reporting
middle-sized and large teams were rather hybrid team structures, regardless
of the methodology (traditional, agile or a combination of both) used in
the software development process. This can be explained by the fact that,
in smaller team settings, the software development methods are easier to
implement, because a small number of people is being managed. Thus, the
differences between traditional, agile and hybrid team structures are more
evident in these cases.

However, by comparing the structure of a small traditional setting (see
Figure with the structures in middle-sized (Figure and large teams

53

o4 CHAPTER 6. DISCUSSION

(Figure , it can be noticed that they share a hierarchical organizational
structure based on a command and control management. This form of
organization and management is found to be characteristic of traditional
project management by previous studies [39, |2, 60|, which compared
traditional and agile perspectives on software development. Keshta and
Morgan [39| found that, the bigger the team, the more control is required
from the project management to govern the team and the project. They
further concluded that larger teams often tend to apply traditional methods,
which further explains the hierarchical organizational structure of middle-
sized and large teams.

While the small teams summarized in Figure reported using a
traditional waterfall development approach, middle-sized and large teams
applied mostly agile approaches such as Scrum of Scrums, LeSS or SaFE,
which were tailored with some traditional practices. The results of the
thesis at hand imply, however, that, even though the overall team structure
appears to be hierarchical at first sight, in reality it is not. Providing the
organizational practices identified and presented in the previous chapter
(see Section , it can be assumed that development teams implement
traditional practices to support their organization and project management.
Actually, these teams’ organizational structure used both the traditional
hierarchical and the more agile approach of managing teams based on
leadership and collaboration. Especially decision-making and control as well
as coordination practices make this more evident.

Decision-making and control practices at the management and team level
are presented in Table[5.5 By comparing these practices at the management
level it can be noticed that the management controls resources, people,
work assignments, coordination and communication and is centralized to
managers. This is the same control as observed in the so-called ‘top-
down organizations’, where the management has decision-making authority.
Despite the limitations given by the control the management holds, teams
still can have some autonomy.

Considering the practices at the team level, it is clear that teams can
control their own activities, participate in planning as well as in decision
rounds directly or through representatives, control the tasks they want to
work on and have an open communication with stakeholders outside their
own team. These practices have a more self-organizing nature, which is well
known to be a characteristic of agile teams. Taken together, this suggests
that development teams apply more traditional organizational practices at
the management level, while at the same time, they organize themselves
in a more agile way. This finding is an important step further in the
better understanding of hybrid software development approaches, especially
for identifying and evaluating the benefits and challenges coming from the
combination of traditional and agile principles.

Another reason for larger teams showing hybrid characteristics might

6.1. ORGANIZATIONAL TEAM STRUCTURES AND PRACTICES 55

be the fact that the majority of the cases included in the analysis came
from recent research. Even though DeFranco and Laplante [22] related the
recent publications on software development teams with agile team research,
the data analysis of the thesis at hand suggested that teams tailored agile
methods to their needs. The modifications are made especially in the
team organizational practices. Moreover, it is important to notice that
a significant amount of studies reviewed in this thesis, reported an agile
transition from traditional settings. Based on the collected data, this further
suggested that, during the transition, some of the old traditional practices
were still used by the team. With regard to the team organization, the old
traditional command and control is still applied at the management level,
whereas development teams have received more freedom by implementing
agile development practices. Thus, the combination of the two methods,
agile and traditional, was also reflected in the overall project and team
management, by showing characteristics of hybrid software development
methods.

The fact that the agility was mostly visible at the team level may support
the argument that large project teams have already found the way to apply
agility at the team level. The findings from the thesis at hand suggest that
the next step towards extending agility to the management level would be
to invite more individuals from the team levels to management rounds and
to apply decision-making by consensus.

The second research question posed at the beginning of this work was
related to the identification of organizational practices used by development
teams. This thesis found practices for each of the following aspects of
team organization, that is, communication, coordination, collaboration and
decision-making. These practices were applied at both project teams’ levels,
that is at the team and management level, and supported each teams’
organizational structure.

The identified practices for one of these aspects often seem to be
used as or support practices of another organizational aspect. Especially
communication practices are applied in all of the other practices. For
example, written communication practices such as documents, are also used
for coordination as boundary objects. Documents are as well a practice that
support collaboration between team members at the team level of the project
organization, by helping them work on common ground. Furthermore,
documents or other forms of written communication can be used by the
customers or their representatives to document their decisions regarding
requirements or planning.

Even though this thesis clearly defined each aspect (see Table , their
intertwining does not consist in the terminology, but it lies on the concrete
practices for communication, coordination, collaboration or decision-making.
This argument is supported as well by Sharp and Robinson [88], who state
that ‘[...] collaboration and co-ordination depend on communication, and

o6 CHAPTER 6. DISCUSSION

communication — in one form or another — is central to successful software
development...|".

The summary of traditional and agile project management presented
at the beginning of this thesis, suggested that traditional teams must
be characterized by a hierarchical organizational structure, whereas the
management levels in agile teams are flat. The analysis in the systematic
literature review conducted in this thesis, affirms once again these charac-
teristics of traditional and agile teams. Moreover, the knowledge gained
here suggests that, especially middle-sized and large teams, implement both
these characteristics by building hybrid team structures. These structures
show agile characteristics at the team level, where they implement more agile
organizational practices, and traditional characteristics at the management
level for controlling especially the decision-making activities.

6.2 Implications for practice

Teams structures and organizational practices found in this research can be
used by teams that seek to improve one or more of the teams’ organizational
aspects studied here. Especially younger teams can mostly benefit from
them as they build their team from ground up. This thesis presents further
implications for practice in the form of guidelines in the next chapter (see
Chapter [7)).

6.3 Generalizability, Limitations and Threats to
Validity

As with all similar studies, there are several limitations and threats to
validity to take into account. This section reflects on and takes into
consideration possible limitations and threats to validity of this study and
its results. Furthermore, it presents the measures taken to mitigate these
threats.

Typical limitations for systematic literature reviews are selection bias and
inaccurate data extraction. These are also mentioned by Kitchenham et al. 3]
in their guidelines for performing systematic literature reviews. To control
the threat of selection bias, especially because of a single reviewer, this thesis
first formulated a review protocol. This protocol defined a clear structure
to follow for conducting the review. The research questions, inclusion and
exclusion criteria as well as the search string helped in holding a similar
selection procedure throughout all databases. Furthermore, Kitchenham et
al. |3| suggest that some researchers may favor a specific study type, which
also increases the possibility of data collection bias. Despite the fact that this
review looked for studies with mature software development teams, the type
of selected publications was heterogeneous, including single and multiple-case

6.3. GENERALIZABILITY, LIMITATIONS AND THREATS TO VALIDITY57

studies, experience reports, mixed-method studies as well as interpretative
and exploratory case studies (see also Figure .

In addition, it is not possible for different researchers to report their
findings in the same way throughout their publications, this also depending
on the topic under investigation. Because of this, there might have been some
inaccuracy in the data reported in the primary studies, where interesting
aspects for this study may have been described in different levels of detail.
This may have been further intensified by the fact that this review did not
identify studies directly focusing in the investigation of development teams’
organization. All the selected primary studies had different focus than the
organization of development teams. This variability to the topics under
investigation in each included publication also poses a threat to reliability
of the findings. To mitigate these limitations, this thesis developed a data
extraction form prior to the phase of data collection, for guiding the reviewer
in identifying and collecting the same kind of information throughout all the
selected primary studies.

Regarding the ezternal validity, it can be stated that, the findings of
this thesis may be found useful from practitioners from several software
development domains. The teams’ characteristics studied in this thesis vary
in different aspects, such as domain, size and context. The most frequent
domains included healthcare, finance and insurance, consumer electronics,
IT products and services, telecommunications, as well as enterprise software
products. From these domains, it was possible to find and summarize
several studies which presented data relevant to organizational aspects of
development teams. This fact strengthens the external validity of this thesis’
findings for these settings, which may be found useful by practitioners in
these domains. Still, the collected evidence represents inconclusive evidence
for other settings such as automotive industry, safety-critical systems other
than healthcare or other software development settings, like Open Source
Software Development. Therefore, it is uncertain whether the findings
presented in the previous chapter are applicable in these other settings as
well.

o8

CHAPTER 6. DISCUSSION

Chapter 7

Model

This chapter presents a model for organizing software development teams.
The model is formed by guidelines, which are based on the insights on teams’
organizational structures and practices presented in the previous chapter (see
Chapter . The guidelines first propose team organization structures based
on team’s needs and then, provide relevant alternatives of practices, which
are better suited in each case. Of course, there is no formula or direct method
that can perfectly work for all teams, especially due to the fact that each
team is different [21].

This chapter is organized as follows: subsection presents the three-
steps approach for choosing one of the seven template structures, suggested
team organizational structures. The second section describes each template
in detail and present suggestions on how to use them. Finally, the third
section presents a list of optional practices to fill in the team structures.

7.1 Model Presentation

Similar to Boehm and Turner [11], it is necessary to first evaluate own
software development setting as well as to identify what are the team’s needs.
The following guidelines can be used by both young and mature teams that
need to build from ground up or improve their organizational arrangement.
Therefore, the proposed method consists of the following 3-phases:

1. Evaluation of the current organizational structure and practices, or of
the new development setting

In this step, the team should first create an overview of its current
organizational practices and then identify the challenges or issues and
the desired improvements in current practices. Mature as well as new
project teams can evaluate their development setting by considering the
five critical agility and plan-driven factors which are used by Boehm
and Turner |11] in their approach for balancing agile and traditional

59

60

CHAPTER 7. MODEL

methods. For that, the practitioners should use the polar chart adapted
from [11] (see Figure to distinguish between agile or traditional,
plan-driven methods.

It is suggested that, if the project is not characterized by a frequent
change of requirements and if the loss due to defects is high, than teams
should implement a plan-driven approach. In this case, the team can
apply the team structure presented in Figure [5.3] and scale it to the
team size appropriately. However, if the estimates per each factor
are allocated very near the center of the polar chart, then the team
can implement agile principles in their project. The team structures
presented in Figures and are the most common arrangements
used by small agile teams. In the other cases, it is necessary to
further evaluate the aspects of organization for the specific development
setting.

. Evaluate the aspects of organization

After the evaluation of the methodology, the typical characteristics of
traditional and agile teams regarding organization should be consulted
and compared with own needs. To accommodate this, the organiza-
tional characteristics of traditional or agile teams are summarized in
Table [7.1] based on the findings from the SLR. The comparison with
these characteristics should guide matured teams to evaluate whether
their actual organization is more traditional, agile or has characteristics
of both. The identification of its current model and the awareness of
the problems should facilitate the decision whether to hold on to the
already used methodology or to change it. For new teams, this step
should help to decide in which organizational aspects they need to put
emphasis to when arranging the team structure.

. Level of control for communication, coordination and decision-making

authority

Communication, coordination and decision-making authority are the
three aspects of organization that can be adjusted in order to best fit
the team’s needs. A way to adjust these factors is, for example, to allow
teams or the management to control the practices for each of these
aspects. For example, a project team might need to give more freedom
to the development teams. This can be achieved by letting development
teams control, for example, communication and coordination practices.
In this case, the control over communication and coordination would
be at the team, whereas management controls the decision-making
authority. Therefore, if the control lies at development teams, then
it can be stated that the team level of the project organization
has control over one or more specific aspects. Similarly, if the
control over these aspects lies at managers, then the management

7.1. MODEL PRESENTATION 61

level of the project organization controls and decides how to handle
communication, coordination and decision-making. Having said that,
this model assumes the following two levels of control: the team level
and the management level.

After consulting the organizational characteristics of traditional and
agile teams (Table, project teams should be able to decide whether
to put the control for each of these aspects to the teams or to the
management, that is, to the team or management level respectively.
The model offers seven team structure templates. These are built based
on the level of control for communication, coordination and decision-
making authority. The team can determine its template by filling in T
or M for control on team(s) or control on management respectively,
in Table The combination filled in here determines the team
structure. For that, the corresponding team structure template can
be extracted from Table [7.3] by using this combination. For example,
if the team fills in T for communication, M for coordination and M for
decision-making, then this model suggests template T4, illustrated in

Figure .

The team structure templates A1 — A4 and T1 — T4 are further described
and illustrated in the following section. In the description of each template,
the practitioners can find further suggestions on how to apply them to their
project team.

Personnel
(Percent level 1B) (Percent level 2 and 3)

40 T 15
30 120

20 T25

Criticality Dynamism
(Loss due to impact 10 + 30 (Percent requirements-
of defects) Single change/month)

Discretionary

life

Many funds
lives Essential
funds Comfort

300

Size Culture
(Number of personnel) (Percent thriving on chaos versus order)

Figure 7.1: Polar chart with five axes representing the factors used to
distinguish agile and traditional, plan-driven approaches by Boehm and
Turner [11]

CHAPTER 7. MODEL

(0) izational .- .
reatiizationa Traditional teams Agile teams
aspects
roles clearly defined no roles evident
specialization high, work in silos low, are cross-functional
coordination controlled by managers or controlled by the team
leaders
through strict regulations collaborative!
and plans!
dependencies not visual visual and transparent

decision-making and
control

communication
intensity

at management level

scarce/sparse and formal

at team level by consensus

vast/extensive and informal

chain of command
span of control

decision-making

rather long
wide

centralized

rather short
narrow

decentralized

Table 7.1: Organizational characteristics of traditional and agile develop-
ment teams

Organizational Aspects More control on teams (T) or management (M)?

Communication T or M?
Coordination T or M?
Decision-making T or M?

Table 7.2: The level of control for communication, coordination and decision-
making authority

Organizational Aspects More control on teams (T) or management (M)?

Communication T T T T M M M M
Coordination T T M M T T M M
Decision-making T M T M T M T M
Template Al A2 A3 T4 A4 T3 T2 T1

Table 7.3: Template matrix: Templates A1-A4 and T1-T4 based on the level
of control for communication, coordination and decision-making authority.
Agile organizational practices dominate the templates Al to A2, whereas
templates T'1 to T4 have more traditional organizational characteristics.

7.2. PROPOSED TEAM STRUCTURE TEMPLATES 63

7.2 Proposed Team Structure Templates

The conclusions of the SLR presented in the previous chapter suggested
that communication, coordination and decision-making are the aspects of
organization that affect a team’s organizational structure the most.

From Table above it can be noted that in the organization of
traditional and agile teams, the control lies at the management and at the
team level respectively. Reconsidering Table it can be noticed that the
combinations on the left tend to give more control to the team, whereas
those on the right give more control to the management. Thus, the overall
organization characteristics of the team structures on the left have a tendency
to be more agile and those on the right more traditional. In Table the
combinations showing more agile or traditional organizational characteristics
are labeled A1-A4 or T1-T4 respectively.

For all of these templates the following practices apply:

1. Development teams at the team level of the project organization are
cross-functional.

2. Customers and important stakeholders are regularly involved in the
development, either directly or indirectly through proxy customers and
domain experts.

This section describes the team organizational templates proposed in
the approach from section [7.I] Most importantly, this section describes
guidelines on how to use the templates in practice. Overall, how exactly
and with which other concrete practices these structures can be further
completed, is left in the hands of each individual team. However, some
of the practices can be chosen from the lists of most used practices identified

by the review (see also Tables and or can be adapted from

the development framework already implemented by the project.

7.2.1 Team structures Al to A4

As already stated above, the first three templates tend to show more agile
characteristics, because of the amount of control they give to the teams for
each of the three aspects of organization. For at least two out of the three
aspects in the triples Al to A4, the control is placed to the team level. A
detailed description of each structure is given below.

Al

In this structure the control over communication, coordination and decisions
is held by the teams. As already stated at the beginning of this section,
the model suggests that each individual development team should be cross-
functional, organize its internal coordination on its own initiative and make

64 CHAPTER 7. MODEL

decisions on the development practices and tools it employs in its day-to-
day work. It is recommended that the team members should at best be
co-located.

On the inter-team level, as the communication is controlled by the teams,
there should be possible to implement communication practices that hold
open and transparent channels throughout all the teams. Each individual
from one team should be able to directly contact other individuals from
the other teams. Moreover, it should be possible for each team to directly
contact the customer as well, in order to hold the feedback cycle, especially
for requirements clarifications, as short as possible.

Regarding coordination, there should be an open space for each team to
propose joint coordination rounds, e.g. in the form of regular or irregular
meetings, forums and discussion rounds about a specific topic or for resolving
dependencies and issues. Nevertheless, it may be necessary to implement
a facilitator as well, who will moderate the discussions in such rounds and
help the teams to stay focused. Because the customer and some stakeholders
hold the control over decisions, they or their representatives should also be
involved in these rounds, especially in those where important decisions are
discussed and made. Customer and stakeholders can be represented by proxy
customers, product owners or domain experts.

Depending on the degree the customer and stakeholders wish and have
the capacity to participate in the development process, this structure
suggests to employ near the teams one or more individuals with both
technical and domain background. The domain experts can already be part
of the teams or can be outsourced consultants. In any case, they should be
able to support the implementation with their knowledge of the domain.

A2

In the second left triple A2, the control over communication and coordination
is given to the teams, whereas decision-making control is held by the
management. In this case, the model suggests the employment of a
management or leader role, which in direct collaboration with the customer
or stakeholders has the authority to make decisions. However, because the
teams still hold the freedom to organize the coordination and communication,
the model further suggests to hold open channels of contact with both
the management and the customer. Both these roles should participate at
least in the important coordinating meetings such as planning meetings and
support the teams with the results of their decision rounds. The rest of the
arrangement is implemented similarly to Al.

7.2. PROPOSED TEAM STRUCTURE TEMPLATES

Leader
Manager -

Development
‘ Team

Domain
Expert(s)

Joint
Meetings

Development Development
Team Team

Customer
Stakeholders Development
-Proxy Customer Team
-Product Owner
-Domain Experts

65

Figure 7.2: Template Al — Development teams control communication,
coordination and decision-making. Gray elements represent practices which

can be adjusted by the practitioners.

direct contact

Leader
Manager Development

Team

Domain
Expert(s)

Joint
Meetings

Stakeholders
-Proxy Customer
-Product Owner
-Domain Experts \ Development

> Team

Development
Team

Development
Team

Figure 7.3: Template A2 — Development teams control communication
and coordination, management controls decision-making. Gray elements

represent practices which can be adjusted by the practitioners.

66 CHAPTER 7. MODEL

A3 and A4

The third and fourth triples A3 and A4 present combinations of organi-
zational aspects that may at first be conflicting. They suggest to leave
the control over communication and the control of dependencies to the
management and at the same time, the team should be able to handle the
decisions. At this point the question may arise: How should the team be
able to make decisions when it is not aware of the dependencies and issues?
To solve this, both these combinations are merged into one single
structure. The structure for A3 and A4, shown in Figure allows
both the management and the teams to have control over the decisions
and coordination. This is arranged in the structure by giving the teams
direct access to the decision rounds, where the team members or their
representatives take active part in the joint discussions by sharing their
perspective, thoughts and ideas to the whole group. The final decisions are
taken by consensus and in agreement with the customer and stakeholders.

To further keep the feedback loops as short as possible, it is suggested
that, if the customers cannot be directly involved in the development, it
should be at least possible for team leaders or team representatives to
directly contact them. Regardless of the customers’ involvement, the project
management should stay regularly in contact with both team leaders or the
team members themselves and offer its support whenever it is needed.

Similarly to the arrangement of A2, in A3 and A4 teams still can have
self-coordinating rounds among themselves. Moreover, depending on the
overall team size, teams can choose to send representatives to the important
managerial rounds. The representatives can be elected temporarily or
permanently, or can even be rotated among members of the same teams.

7.2.2 Team structures T4 to T1

By considering the four last triples from left to right and the structures
illustrated in Figures to [7.8 it becomes once again evident that with
each step to the right, the control held by the management increases. It is
important to recall that, overall, both traditional and agile organizational
aspects should be implemented in these structures. Despite the fact that,
with triple T4 the models’ suggestions move in more traditional grounds, the
organization inside each individual development team should lean toward
agile characteristics. Thus, at this point it is recommended to continue
implementing the same practices for each teams internal organization as in
structures Al to A4.

In the following subsections, the more traditional structures are presented

in the descending order, from the least traditional T4 to the most traditional
T1.

7.2. PROPOSED TEAM STRUCTURE TEMPLATES 67

-Proxy Customer
-Product Owner

‘ -Domain Experts
Customer.
Stakeholders

Management
Leader

Decision
Round(s)

2
N
o
e,
&
o
°)
e
%
S
<

Team Leader >

Team Leader Team Leader

Representative Representative Representative
~
Domain
‘XFT ‘XFT Expert(s) XFT
'aYe 'aYe 'aYe
Development Development Development
Team Team Team

Self-coordi
nating
Rounds or
Meetings

Figure 7.4: Template for A3 and A4 — Development teams control
communication and decision-making (A3) and coordination and decision-
making (A4), management controls coordination (A3) and communication
(A4). Gray elements represent practices which can be adjusted by the
practitioners.

68 CHAPTER 7. MODEL

T4

In this structure, the team holds only control of the communication, whereas
management handles coordination and decisions. Because the control over
communication lies with the teams, it is recommended to still allow teams
to directly contact each other and also initiate cross-team working groups.
These can be forums or communities of practice called by teams or team
members in on-need basis. They can serve for cross-team collaboration,
knowledge sharing or discussions of issues and dependencies. Furthermore,
team members should be able to directly contact the project management as
well as their team leader, and keep the feedback loop short. However, because
the coordination is held at the management level, the communication with
the customer and stakeholders as well as the formal coordination rounds
at the management level are handled by boundary spanners, such as team
leaders.

Management oordination Customer
Leader & Decision Stakeholders

Round(s)

Team Leader
.

Team Leader

()
Domain
Expert(s)

Q=0
g\ Development J=\
n n Team

Development Development

Team Team
Self-organized /
Rounds

Figure 7.5: Template T4 — Management controls communication,
development teams control coordination and decision-making. Gray

elements represent practices which can be adjusted by the practitioners.

7.2. PROPOSED TEAM STRUCTURE TEMPLATES 69

T3

By moving to this structure, the team has only control of coordination.
In this case, it is suggested that team representatives organize regular
coordinating rounds, where dependencies and issues can be discussed.
However, the inter-team coordination should not be restricted only to these
rounds. It is further suggested that team representatives, or the people
holding the role of boundary spanners for each team, frequently contact one
another. This practice should facilitate getting instant feedback in the cases
where issues arise. Especially in complex systems, this kind of issue resolving
may not be sufficient. For that, these guidelines suggest organizing inter-
team gatherings on the specific topic, such as system architecture or quality
assurance, where a small group of people from each team can participate.
Because the management rules the communication and decision-making
practices, practitioners may find it helpful to organize special decision rounds
with the interested groups. These can be members from the management,
customers and other important stakeholders. The decisions taken here can
be then later communicated to the teams.

Decision
Round(s)

7~ /S
Management Customer
Leader Stakeholders

Jo

Team Leader Team Leader

”"\”‘ Development

Team F Y o
Development Development
Team Team

Self-organize
d Rounds

Figure 7.6: Template T3 — Management controls communication and
decision-making, development teams control coordination. Gray elements
represent practices which can be adjusted by the practitioners.

70 CHAPTER 7. MODEL

T2

With this triple, practitioners chose to put the control over communication
and coordination at the management, while leaving the decision-making
authority to the teams. These settings may be contradictory, however, they
are still applicable in a team structure. For example, teams can apply their
decision-making authority by giving feedback on problems or sharing their
own perspective with the management in coordinating rounds.

Because the communication and coordination is controlled by the
management, teams can only communicate with one another through
boundary spanners or boundary objects. Boundary spanners should further
facilitate the coordination by maintaining an overview over the project
progress. This should help them to quickly identify and address issues and
dependencies. Because teams do not directly communicate with one another,
the role of the boundary spanners and boundary objects is crucial as they
should replace the direct communication in the best way possible.

Furthermore, as the communication with the customer and stakeholders
becomes more scarce, teams may often lack the necessary knowledge to
directly address issues related to requirements. To avoid the long feedback
loop while waiting for the customers response for questions, practitioners
could find it helpful integrating the domain knowledge into the teams. At
this point, domain expertise plays a key role in supporting teams and for that
reason, it is suggested to place at least one domain expert close to them.

T1

With this combination, the management level of the project team structure
holds the control over all the three aspects of organization. It is clearly
evident also from the structure visualized in Figure that the commu-
nication lines at the team and especially at the inter-team level are even
more scarce. In this case, the project teams’ practices will be dominated
by those who put the control at the top of the organizational structure.
Nevertheless, especially for complex projects, it is important to support
inter-team coordinating rounds.

7.2. PROPOSED TEAM STRUCTURE TEMPLATES

71
Decision S .
Round(s) Proxy Customer
Product Owner
-Domain Experts
7~
Management Customer
Leader Stakeholders
Round(s)
7~
Team Leader Team|Leader Team! Leader
XFT E)
xpert(s
XFT
7~
Development
Development Team Development
Team Team
Figure 7.7: Template T2 — Management controls communication and

coordination, development teams control decision-making. Gray elements

represent practices which can be adjusted by the practitioners.

72 CHAPTER 7. MODEL

Decision

-Proxy Customer
Round(s) J

-Product Owner

T

-Domain Experts

Management Representatives Customer
Leader Stakeholders

%
Coordination
Round(s)

7~

Team Leader Team|Leader

Expert(s)

Development
Development Team —— Development
Team . Team

Figure 7.8: Template T1 - Management controls communication,
coordination and decision-making. Gray elements represent practices which
can be adjusted by the practitioners.

Chapter 8

Summary and Future Work

This thesis has investigated the organizational aspects of software develop-
ment teams. The review has collected the evidence from the recent literature
and has been able to analyse the organization of software development
teams. With the help of a thematic analysis, it has been possible to identify
organizational team structures and practices. The findings have indicated
that there are three different organizational structures for small development
teams, emerging from the software development method they apply, that is
traditional, agile or hybrid. Further, the identified structures for middle-
sized and large teams were almost identical.

In the larger team settings, this thesis identified a structural division
between team and management levels. In the first, that is the team level,
project teams implemented not only development agile principles, but also
management and organizational agile principles to support the intra-team
organization. In contrast, in the majority of the cases the management level
was found to still implement traditional management techniques, where the
coordination happened based on the principles of command and control.

Moreover, the case studies from the recent literature have used a various
number of organizational practices, which further supported each team’s
structure. Overall, this thesis has found four types of organizational
practices: communication, coordination, collaboration and decision-making
practices. The in-depth thematic analysis of these four types of practices
has further implied that, all in all, these practices support each other to
achieve a better organization inside a project team. For example, an open
and transparent communication of information has been found to strengthen
the intra- and inter-team coordination and collaboration, and facilitated the
application of consensus to support collective decision-making.

Taken together, the identification of development team organizational
structures and practices provided an excellent opportunity to summarize
them and finally, formulate team organizational guidelines for practitioners.
Based on the analysis of the evidence and experiences reported in primary

73

74 CHAPTER 8. SUMMARY AND FUTURE WORK

studies, this thesis has developed several team organizational structures
which should guide the practitioners in developing better team arrangements.
Furthermore, the guidelines have provided organizational practices which can
be chosen by teams to complete these structures based on their own needs.
In summary, this thesis not only contributed to a better understanding of
the organizational aspects of software development teams, but also provided
guidelines for development teams and practitioners to achieve a better
organization.

Directions for further research

The findings of this thesis should help the researchers and practitioners
to better understand the aspects of organization in software development
teams. The knowledge summarized in this work can find usage in various
software development settings and domains. Nevertheless, the application
and validity of the generalizations presented here in settings such as Open
Source Software Development cannot be guaranteed, as project teams from
these settings were not part of the selected literature. It can be argued that
the further investigation of such settings is important to better understand
very large, distributed teams, which are common in Open Source Software
projects. Because large-scale projects face a lot of challenges regarding team
organization and management, the solutions, or at least improvements to
such problems may be found in this field.

Furthermore, the review of organizational aspects in development teams
was based mostly on the evidence provided by several projects, which had
previously delivered software products by implementing traditional, plan-
driven methods, and which, with the birth of agile principles, completely
transitioned to or partly adapted agility in their development process.
According to analysis of this evidence in this thesis, these projects presented
rather hybrid development approaches, as they implemented more of a
combination of both traditional and agile approaches. Having said that,
this thesis raises the question whether young development teams, with no
experience in using traditional principles, will still engage them in their
software development process or will they be able to fully implement the
agile principles.

Finally, this thesis has proposed a model to guide teams into evaluating
their organizational needs, which should guide them into choosing a team
structure as well as organizational practices that best fit their needs.
This is a new approach, which is developed based on the findings of the
literature review conducted for this thesis. However, whether this approach
finds applicability to different software development teams is not further
investigated. Clearly, it is necessary to further evaluate this model with
teams and, if needed, to provide changes and adjustments accordingly.

Appendix A

Review Protocol

A.1 Search String

lagile OR (traditional software development OR plan-driven) OR hybrid]
AND (software OR development) AND team AND (structure OR organisa-
tion OR coordination OR communication)

A.2 Research Questions

RQ1: What development team organizational structures exist in software
development?

RQ2: What are the practices for the organization of development
teams?

A.3 Inclusion Criteria

IC1: The paper or article describes team organisation structures.

IC2: The paper or article describes teams which implement principles
of agile, traditional or hybrid approaches in their software development
processes.

IC3: The paper or article reports a case study of an agile, traditional
or hybrid software development approach, where the organisation of teams

is discussed.

75

76 APPENDIX A. REVIEW PROTOCOL

A.4 Exclusion Criteria

EC1: The paper or article reports a team organisation practice not from a
software development setting.

EC2: The paper or article is written neither in German nor in English.

EC3: The paper or article is not subject to peer-review for conference
proceedings or for publishing in a journal.

EC4: The paper reports a team organisation practice in an educational
environment with student teams or a pilot study or project (updated

06.12.2020).

A.5 Database Selection

The search string will be used on the following digital libraries:

e [EEExplore

Google Scholar

ACM Digital library

ScienceDirect

SpringerLink

A.6 Search Process

1. Run an automated search by using the search string in each database.
2. Apply inclusion and exclusion criteria based on the title only.
3. Exclude duplicates.

4. Reapply inclusion and exclusion criteria based on abstracts and
keywords on each paper or article left.

5. Considering the whole paper or article content, reapply inclusion and
exclusion criteria once again. The papers or articles which were not
excluded during this step, are the papers to be used for the review.

6. Read and analyse each paper or article. Use the data extraction form Bl
to systematically collect data from each publication.

Appendix B

Data Extraction Form

Table B.1: Content of the data extraction form, the data items marked with
* are optional

Data item Value

DOI

Author(s)

Title
Publication year

Method of data collection

Project team, team inside a company?
Branch
Small, middle, large setting?

Number of subjects/teams participating in the obser-
vation

On-/Off-shore, distributed, remote/virtual team(s)?

*Number of locations

*QOrganization type: hierarchy, matrix, flat, etc.

Software development method: agile, traditional,
hybrid, in agile transition

Processes and frameworks: Scrum, Scrum of Scrums,
SAFe, Kanban, DevOps etc.

Continued on next page

7

78 APPENDIX B. DATA EXTRACTION FORM
Table B.1 — Continued from previous page
Data item Value

Main team: Size
Main team: Roles
Main team: Leader role

Decision making, chain of control: centralised,
decentralized...

*Tasks and responsibilities

On-/off-site customer?

Sub-team(s): size

)

(
Sub-team(
Sub-team(s): leader role

: roles

Sub-team(s): tasks and responsibilities

*Development practices

Communication
Coordination
*Documents
Artifacts

*Tools

Pros, positive aspects

Cons, negative aspects

Continued on next page

Appendix C

Selected Primary Studies

79

APPENDIX C. SELECTED PRIMARY STUDIES

80

abod 1xou U0 panULIU0))

1¢| wony
QIRI}[eOH -eZIUBSI() 9IROYI[BO] © JO ApNig ose)) Yy :Weq],
SUSWRIS ‘UOTezZIu 19NPOIJ PoINQLIISI(] A[[eqolx) ® ur sdpad(pue
o[ppru ueol ‘sd0OAd(-B3I0 oIROYIROY 610% AIoArp(snonurpuo)) Jurpdopy Ul soFuol[ey)) i
gunsures
ueq ‘syonpoid S[IqOIA 67| AB0[0POTI9]A O[Sy
o[pplr -uey pue wWnog ‘(I pue 88| 6102 wniog o) gororddy mou Yy :[PpoN Junidenyg ¢
g ‘A1ysnp
-UT JUOTUTIR)ID YU 18| AB0[0pOTIa]N $S9001 OISy S, WIRT, ® JO UOTY
o81e[urqUey ‘OOULIDS RIR([IIY 610C -N[OAY Y], :00USIdG ®Je(] i OISy SUIALIYDY 4
e}
-I9jem [euor}Iper)
SWINIOG
Jo wnIg ‘sured) 6¢| wony
OBl o[ISe-UOU ‘WNIOG VS[tozetty 0202 -ezZIUBSI() 98Ie] © U[—O[I8Y 01 JUIUOIISURI], I
97Z1IS POUIIRIN urewro(g TBOA S °N

MOTADI 9INYJRIVHI] DIJRUIDISAS O} UT POPNIUL SINJRIII] 9} JO ISTT :T°D) 9[qR],

81

abnd 1xoU U0 PaNnULIUO))

UWIOYSAS
UOI}RWO)NE DO Q7| swstueydaIy
GQQorT ‘swnIng “yuowryaedop surqeur] 901y J, JO Apnjg ose)) y :juowdo(esd(]
98Ie] JO WNIOG ‘WNIOG o1qng QT0C O[Sy 9[edg-o8Ier] Ul UOIJRUIPIOO)) UIRI}-IJUI] Q
o8nYy §SoT ‘(sdpa 96| ToMORMURT
- + uequeyp IoInjoeym 9[IqOWOINY URULIDY) ® IR WIS d[RdG-981e]
93Ie]) QSO POPURIXS -URWI O[IOWOINY 610 Jo uoryeorddy pue uonpdopy oy} SUI)eII)SoAU])
uorysey 76| Aprg ose)
[[eJIo9em Ul AIOAT] guryyes V dSH O[Sy Ul Seoue)si(] [RINIMOOIDOG pur
[[ews -op ‘X -+ wniog [eonNeORULIRY J 610¢ T[eorydersosr) ‘Terodwe], 10j sorgojeng surdo)) 9
“IopusA wrojyerd
o[pprua poseq wmniog UOTI)RIORI[0))
(aag)
yuowrdorord(]
USALI(]-IOTARYS(]
QI ‘sdoas(
‘dX ‘aequey| SMON ssoulsng : .
S as pue uopeuLop] ﬁ Q| se1pn)g ose) omy 1y () pue s1odofead(]
weo] puv oS¢ [epueurg 10 SIOP[OYONRIG SSOUISTE OJOWDY SSOIOYy UOIJeD
610¢ -lunwuwo)) pur Ajen) oremijog ossoidur] oy S
o[pprt yim WNDG WY o31er] yoroxrddy ue se uowdo[oAd(] UOALI(J-IOTARYOE]
971§ POUIRN urewro(g RLEVN STILL ‘ON

abnd snowaid wolf panuguoy) — 1°0) d[qRL,

APPENDIX C. SELECTED PRIMARY STUDIES

82

abod 1xoU U0 ponULIUO))

oBel TS 60] wmaog penqrysi A[reqory) o[eos-ofre ur
o8re| WIS el0e 9[0Y IoUM() 1ONPOIJ 1) Sul[esg Ul seoualIadxy el
G9| Apnjg ese)) y :quewrdo[eaa(]
[Teus WNLIDS QouRUL] 2T0Z oIem)og [eqO[H) Ul WNIDS 01 JNY WOl 4l
S9OIA
. -Io§ pue ASo[ou 0¢] Jueurdoreaa(] arem)jog
0§ ‘WIS ‘
oIPpI 898 -29], SULUIG - 9108 ponqusiq A[eqor) ' ut ody Sundepy I
[[e}erem gurroyyerd oIqoOIN
[RUOI}OUNJ-SSOID
‘SuInIng Jo wniong
(ao ‘aax 0F] sor
SummreiSord p sunsureg -U0I309[F SUNSUeg Ul UOIJRULIOJSURL], 9[I8Y 1M
ogre| areg) . ‘wnaog R 910G goouortodxyy o8y Summooeg 0y Aoumor () 01
. ISWINSUO))
g| s3uryeg pLIqAH Ul juewru3IesIjy
oIem1Jos astrdieg suruue[J Jo Apnjig ose) y :juomwrdo[esd(] orem
93rIe] QoG ‘WNIDG -UY PozZIpIepuUR)S QT0Z -1OS 9[edG-938IRT Ul SoSUS[[RY,) UOIRUIPIOO)) 6
971§ POYIPIN urewoq T89X SIILL ‘ON

abod snowa.d wolf panuruoy) — 1°0) 9[qR],

83

abnd jxouU U0 PanuLIUO))

SuonN[os
S S JuLUIeFeUR UL 16| woryeziuesi(y) yuowdoreas(]
PPt ostrdaqusy 4002 9IRM)JOS POINLIISI(] © Ul wnidg Surjuaurajdury ol
‘aremijos DING
y_ uoryez
S[007 Juew -tre31() juewrdo[ers(] srem)joq o8re © url so[dm
o81e[wnis -dofeAsp oI1emijoq 00 -ULlJ O[Sy UM [opOJN Wrelsord Surjuowsduy 971
G0GOg PaId)sn[d 7l
‘ ‘ P| yusmuoauy
oSre] ‘SOGOG ‘swNINg ue Q002 QT
! JO WNIdg ‘SumIng apuey Q[ISYy o3Ie] ' Ul Juowegeur]y Adouepuedo(]
UL VSN
SUOTI[OF 21PN
SUSWIOLG ‘SODIATIOG
q)eoH- Ansnpur Ei s1otaRyRg dIysopear] uo
98Ie] WNIDG aIRd) RO 600g SPINJONIIG UOTYeZIURSI() 9[RIG-9SIRT JO SOUSNJU] il
9715 POYIIRIN urewro(g TBOA STILL ‘ON

abnd snowaid wolf panuguoy) — 1°0) d[qRL,

APPENDIX C. SELECTED PRIMARY STUDIES

84

abvd 1xoU U0 PaNULIUO))

WDISAS 9IRMIJOS
[BOT}LID-UOTSSTI

SwnIg ‘Aoegol- ‘Arjsnpur Ei UOT1)RZIURII()
o8Ie[JO WMNIDG ‘WINIOS aIed)eoH 610 XLIJRIN Ul Wea], o[ldy dn Sul[eog Ul s10308 Aoy 0%
]¢| woryeziuesio
o re] Heque 104995 9NqNd 020z oIqng oSIeT ' Ul AWOUOINY WRYJ, JUI[qRUH 61
(uoryisuedy,
+ UOIONIISUO0))
‘uotryRIOqR[H
‘uorydeouy
:seseJ) $S9001g
poytuf) pue
(yuowrdoposep
OATYRION) IX
[rews -+ WIS - G007 E Apnjs osed © - senbruyoa) 9I10YSHO 9ISy ST
ozig PoYIIN urewo(FEDN o OIIL 'ON

abod snowa.d wolf panuruoy) — 1°0) 9[qR],

85

abod 1xoU U0 ponULIUO0))

WINIOS
oS1e TeqUINIoS 90URINSUI PUR l99] oriSe oreos
! queq ‘uoIsud g 4102 -98IR] Ul SWSIURYDIOW UOI}RUIPIOOD WIRII-IQIU] £e
URQUINLIOS
wnog juetdo
-PAdP ‘THONTHA owrtrexsord-T,|
uo poseq pouur[d 1s98Ie] S ACMION
. UWI9YSAS Ei ymowdo
Einom omao goﬁﬁwoﬁ% m.o%..B -[0AOD OIRM)JOS OISR O[ROS 9FIR] Ul WSTURYOSU
o8xe| AP CHONTE yuotm.edop QT0Z UOIJRUIPIOOD TWIR)-IOJUI UR Se S3Uuredw Jo e
uo poseq pouueld otqng .
UOIRSIISOAUT UY §A[NPAYDS 0 J0U I0 J[NPAYDS OF,
[Tews WINIOS [9g] uresy opiSe we ojur ures) reuonyIPRI) ©
Ansnpur oremyos JO UOIIRULIOJSURI) 9} SULINP SUOIJORIDIUL [RIDOS 1c
(s ostd 1oy 810 pue woryesrunuruon wr seSueyD Y JO SWATRUY
9IBM)JOG
971§ POUIRN urewro(g RLEVN STILL ‘ON

abnd snowaid wolf panuguoy) — 1°0) d[qRL,

APPENDIX C. SELECTED PRIMARY STUDIES

86

abnd 1xouU U0 PanuLIUO))

o381e]
o81e[
o8xe[oTeMJOg 2| o1eog ge o[idy Sumrporig
oSe] WIS ostdioyuy 910 JO SARA\ oAl :SBUI)OG JuowdO[oAd(] olem 9¢
-Jog oISy o3I Ul UOIYRUIPIOO)) UIBT -IU]
o381e]
Jueq ‘S9dIAIOS G)| erpu] pue syrewruo ur j00l01g poINqLIISI(]
[rews WINIDG [erouRUIL] 1107 O[I8Y Ue WIOIJ APNIG 9sB)) Y :SYIOA\ WNIDG ATAA T
sooroerd Wo)SAS
pue sodourid UOI)RPUSWIOIT
ueo] pue JX ‘uotsraoad
oUWIOS pue WIIDG SS900e pue
[[ews A[urewt sydope JuojuOd JOUILIU]
sooryoeId
pue sordmourid S9OTA
ued] pue JX -I0S 9INJONIjseljul
[[ews ‘WNIog sydope pue o00I9UWITO)-9 ‘ Ve
61| yuowoSeueuwr pue ATy
soorjorad J¥X Ansnput €108 -onpoid ures) o[ISe UO SIpNYs 9seD oA1yRIdIdIoU]
[lews + wmnig jdope [erouRuI]
9ZIS POYISIA urewro ELLIN SIEIN ‘ON

abod snowa.d wolf panuruoy) — 1°0) 9[qR],

87

abod 1xoU U0 PINULIUO,)

asn
[eUIOUTI IOJ UOI)

ey -eordde ‘sooiales
[[ewis -Iojem Teuonyipery pue sjponpoid]
9SNOY 9IeM}JOS
[reus ‘Sue)sAS
JuowoSeURW puv 66| yuomdo[oAd(] oIem)jog OISy
[reus dX AjInooes YIomjoN 6002 JO uoIjezZIURSI() OU} PUR SWOISAG SUIA[OADO)) 0g
310 0G| Apnjs oseo y :ureaq,
o81e[OIS POZIWO)SID SIOIAIDS [RIDURUL 0107 ©O[ISY Ue Ul ISni], P[ing 0} seo1jorid o[I8y Suls)) 63
(seorporrd
dX M) wniog
pomquustp AMmg
‘G0G panqrIjsIp | yueowuoliaus 1eqo[3
98Ie[‘SWINIdS PoYe[OSI jooex Aw 07107 ® ul juowodeuewr fpoofoid :o[I8e PoINQLIISI(] QT
(esnoy-ur)
sruouodurod
oIeM)JOS F¢| oa1300dsIog woNIUS0) PNLIS(] Y (WRI],
o[ppIu wngHJdX astrdagusy CI0C o8y posiadsyq ' UMM MO[UOIJRULIOJU] 1T
971§ POUIRN uremwog RLEVN SLL ‘ON

abnd snowaid wolf panuguoy) — 1°0) d[qRL,

APPENDIX C. SELECTED PRIMARY STUDIES

88

abod 1xoU U0 poNULIUO))

SOOIAIOG TUOT)

~ROTUNUITIOID[A],
uory ‘9dI0uIIIO))
-ewt) ‘Teroueul 18] seniqisuodsoy
-I0Jur ‘SOOTATOG LI pu®R UOI)RIOQRI[0)) ‘SOINJONIYG Wea], uo sjoeduy
ou pue Sunmsuo)) L10z yuowAo(do(] pue AIoAr[e(] snonurjuo)) surpdopy S
soouerdde [eurs
10§ 9IBM)JOG
‘Kweduo)) 19| ureay,
Juowdo[oAd(] WNIOG B Ul SSOUSAIIORYH WRAJ, SULSRURUWI-J[OG
[reus WIS 9IRMIJOG 110¢ JO SjURUIULIo)O(] oY) JO Apnig oanejent) vy ee
SuoIN0S
JIouodeUR
gog ‘wmiog Omojjr0d pue
J[ppru doInosax ‘yo9foxd GO0Z |G6| onssT wrea) SSOId aAJosal 0 seoeds wado Surs() A4S
[EF1OYEA QAT)RIOQR[[0)
Ansnput
arempIey f| ures
pue oIeM)JOS 1o do[oAdD 9IeMIJOS [RCO[S B Ul SUIURISOL]
[reus S5 ‘dX SUOIIRITUNWUIOII], 0007 PWIIXH I0J soorjorid UOIJRITUNUITIOD [RIIUSSSH 1€
971§ POUIN urewro(g ALV IILL 'ON

abod snowa.d wolf panuruoy) — 1°0) 9[qR],

89

abnd 1xoU U0 PaNULIUO))

[reurs

[reuus

[rews

[Teus

[Teus

o81e[

WIS 9[Ide
uoy) uoAlIp-ueld SOOIAIOG T]

A1ypsnpurt
UOT)eOTUNUIWOII[A],

9IBM)JOG
UOTI)RIOR[[0))
ostrdoyuryy

Arpsnpuy

Apugey [pue
A31our] ‘Tomod

5901} Anysnpuy N

-orid wnIos paro] Iodeq — ‘Swo)SAQ
-Te) YPM WNIDG pue AIQUIYORIN
Ansnpuy ss9001J

UOSSOLI]
WNIOG ‘UOTIRITUNUITIOII[],

8¢] Ayrend)
aIemM}Jog UO Apnjg osen) [eurpnySuo y -
0T0Z WINIDG 0} SS9D0IJ USALI(J-UR[J ® WIOIJ UOTISURI], Xs

gg) Apnis
1107 osed-1ynN V :yuomrdo[oad(] aIemijog [eqolr) ul 9¢
WNIOG SULIO[IR], JO SUIPURISIOPU[) UR SPIEMO],

E_ 100lo1d
YI0C O[Ide poInquIISIp o[edS-08Ie] ® Ul JULIOMION Ge

oz1g

POURIN urewo(q

Teax ML 'ON

abnd snowaid wolf panuguoy) — 1°0) d[qRL,

APPENDIX C. SELECTED PRIMARY STUDIES

90

abvd 1xoU U0 PaNULIUO))

6L sureoy [rews

[rews 9[04 oy Teaidg SO1)SINSUIT] €661 107 ssoooid juowidoressp pue Juruuerd joeloid y v
S9OTAIOG
QIRIOA pue
[[ej-wnids Ioqer] UeISoMION 97| emyewr sureo)
[[ewis -Iojem ‘umang ‘103008 o1qng QT0C [eUONDUNJ-SSOID 9ISk st $9FIoWe AWouoINe MO ¥
G| wrea, o8y
ue ur juowido[eAd(] PoINqLIISI(] JOo soSua[[ey))
- - - QT0Z OY) OPPR]I, 03 AoUINO[® :[ISY 0} WIS WOI] %
SUI9)SAS 08| mo1a oLIjUED-001)0RId
sordoutrd eorjro-Ljoges ‘A1 ® IUOIRZIURSIO SULIDUISUD oIeM)JOs [eqO[3
98Il UBO[UMM WNIOG -SNPUI SIBIY}[ed[] QT0C ®© Uur ueo] 0} UlAlIp-ue[d wWOI} JUTUOISURI], 6€
1oNpOoIJ
[0IjU0)) UOIIOIN
‘seLnysnpuy
$S9001] 9)| Apnjs oseo y - sureay ofide
[reus wnog A10j0e] (eI Q707 SUIZIURSIO J[@S 0} JUDUWAFRURUL Poseq [0IjU0)) Q¢
971§ POUIN urewro(g ALV IILL 'ON

abod snowa.d wolf panuruoy) — 1°0) 9[qR],

91

obnd 1xouU U0 panuLIUO))

01] uoryeuIp100)) 10§
suorjeordw] Surpur)sIopu[] SpPIemo], :POYIdA

uory 1o dO[PAd(T OISY O[RI§-93IRT UOIIRIOUSL) PUO
93Ie] wnig -eziuedio oIqnJ 020C -99G 0} UOIJRIdULY) 9SII ® WIOI] SUTHOIYISURIT, VA%
SdoD
M URGUINIOG 12| wossouryg
‘wnIng omjonIISRYUL 9se) — UOI}eZIURIIO JUOMWAO[OADD dIRM)JOS O[IFe
93rIe] wwusnﬁpm%m:oS@oEsEEoo@EH 10 PoIMqLI)SIp 93Ie[® UI 9d110vId JO SOIIUNUITIO)))%
SOOTAIOS
pue 9IRM)JOS ¢)| s1elorg panqriysiq
SUOI}RITUNUITOD ‘98re] uo os[y sorso[opoyey Juswdoress]
93rIe] WNING TRqO1D) GTOZ oIemiyjog o[dy 03 [euonIpel], WOl SJUIAOJA GP
ogTey (Trejrorem urewop 26] Soels pue sBurjeow o
o3 %)) ‘ueguuniog SuroomSuy 020¢ 9sn oY) U0 Apnjs SPOYIOW-POXIW Y :SULISUISUD a4
‘uequey] ‘WNIOG 9IBRM)JOS [R]O[S Ul UOI}RUIPIOOD FUIPURISIOPU()
uon
-eut
-IoJul
ou [rejIorem - 0861 6| senbrutypa], yuetwdo[ess(] aIem)jog wrea], oy
971§ POYIIRIN urewro(g TBOA OML ‘ON

abnd snowaid wolf panuguoy) — 1°0) d[qRL,

APPENDIX C. SELECTED PRIMARY STUDIES

92

L¢] dx

oS8Ry gog ‘wniIdg ‘qx S901AIOG T] ©00¢ Ppue wniog furs() yuewdo[oAd(] JUSUIFUO)-SSOI)) e
¢9| 110doy] eoustIodxy Uy :juowedeur]y o[dosq
Suoe pue ‘ssedol ‘9In}odjIdIy JO 9s() 9y} YSNoIy T,

oIppIu dx -E:EQWOQQ.EE GOOZ senbruyoo], SULIGUISUG ©IBM)JOG JO UOIIRIZOJU] zs
. Q)| JusuIUOIIAUY
yuowrdo[eAd(] ojerodio)) PoMQLIISK(] B WOIJ
pouIBe] SUOSSO] PUB SIOUSLIAAXG] WINIOG

o[ppIu GOG‘WNING SOOIAISG T] e10¢ Ym yuowrdo[eaep-o) [RUOI}RZIUBSIO-IHU] 16
stone .| Apnjs aseo

o81e] WIIOG A QTOC *© UOSSOLIY Je UOIJeulIojsuel} o[Ide oeds-o3Ier] 0%
2g| suony

o[ppru oIde [eoueuy 6107 -eziue3i() xo[dwo)) Ul surea], Snowouony o8y 6%
[opOW-A UDALIP oIeM)JOs cg| Apnjys oseo e :orem)JOSs [RO1ILID-A)OTeS

o81e] -ueld ur wWNIOG [RO1LID-K)oFRg 070z ur juowdo[osdp uoAlIp-ue[d pue o[ISe SUIYSOA QF

971§ POUIN urewro ALV IILL 'ON

abod snowa.d wolf panuruoy) — 1°0) 9[qR],

List of Tables

2.1 Project and team management in traditional and agile set- |
| tings [20060] 10

|3.1 Definition ot the key terms|. 13
[3.2 List of the sub-activities in each phase of the systematic |
| literature review. The activities marked with * are not |

| mandatory.| 15
4.1 Inclusion criterial 23
4.2 Exclusion criterial oo 24

4.3 Overview of extracted literature for each database in each step| 24

b.1 Overview of the team size reported in the selected literature. |
| T'he cases where a size range 1s given were multiple case studies.| 30

5.2 Overview of communication practices|. 42
5.3 Overview of coordination practices| 45
5.4 Overview of collaboration practices| 47
5.5 Overview of practices for decision-making and control] 50

[7.1 Organizational characteristics ot traditional and agile devel- |

[opment teams| 62
[7.2 'The level of control for communication, coordination and |
| decision-making authority| 62

[7.3 Template matrix: Templates A1-A4 and T'1-T4 based on the
level of control for communication, coordination and decision-
making authority. Agile organizational practices dominate the
templates Al to A2, whereas templates T'1 to T'4 have more
traditional organizational characteristics.|. 62

IB.1 Content of the data extraction form, the data items marked |
[with * areoptional| 7

|C.1 List of the literature included in the systematic literature review| 80

93

94

LIST OF TABLES

Bibliography

1]

2]

3]

[4]

[5]

6]

7]

Bibek Acharya and Ricardo Colomo-Palacios. “A Systematic Liter-
ature Review on Autonomous Agile Teams”. In: 2019 19th Inter-
national Conference on Computational Science and Its Applications
(ICCSA). IEEE, 2019, pp. 146-151. 1SBN: 978-1-7281-2847-4. DOI:
10.1109/ICCSA.2019.00014. URL: https://doi.org/10.1109/
ICCSA.2019.00014.

Rehan Akbar and Sohail Safdar. “A short review of Global Software
Development (GSD) and latest software development trends”. In:
2015 International Conference on Computer, Communications, and
Control Technology (I4CT). 2015, pp. 314-317. DOI: 10.1109/TI4CT.
2015.7219588.

Kitchenham BA and Stuart Charters. “Guidelines for performing
Systematic Literature Reviews in Software Engineering”. In: 2 (Jan.
2007).

Eric Babinet and Rajani Ramanathan. “Dependency Management in
a Large Agile Environment”. In: Agile 2008 Conference. IEEE, 2008,
pp. 401-406. 1SBN: 978-0-7695-3321-6. DOI: |[10.1109/Agile.2008.58.

Leonor Barroca, Torgeir Dingsgyr, and Marius Mikalsen. “Agile
Transformation: A Summary and Research Agenda from the First
International Workshop”. In: Aug. 2019, pp. 3-9. 1SBN: 978-3-030-
30125-5. DOI: |10.1007/978-3-030-30126-2_1/

R. C. Beckett. “An integrative approach to project management
in a small team developing a complex product”. In: 2008 IEEE
International Conference on Industrial Engineering and Engineering
Management. IEEE, 2008, pp. 1028-1032. 1SBN: 978-1-4244-2629-4.
DOI: [10.1109/IEEM. 2008 . 4738026, URL: https://doi.org/10.
1109/IEEM. 2008.4738026.

Saskia Bick, Alexander Scheerer, and Kai Spohrer. “Inter-Team
Coordination in Large Agile Software Development Settings: Five
Ways of Practicing Agile at Scale”. In: Proceedings of the Scientific
Workshop Proceedings of XP2016. New York, NY, USA: ACM, 2016,
pp. 1-5. 1SBN: 9781450341349. DOI: 10.1145/2962695.2962699.

95

https://doi.org/10.1109/ICCSA.2019.00014
https://doi.org/10.1109/ICCSA.2019.00014
https://doi.org/10.1109/ICCSA.2019.00014
https://doi.org/10.1109/I4CT.2015.7219588
https://doi.org/10.1109/I4CT.2015.7219588
https://doi.org/10.1109/Agile.2008.58
https://doi.org/10.1007/978-3-030-30126-2_1
https://doi.org/10.1109/IEEM.2008.4738026
https://doi.org/10.1109/IEEM.2008.4738026
https://doi.org/10.1109/IEEM.2008.4738026
https://doi.org/10.1145/2962695.2962699

96

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Saskia Bick et al. “Coordination Challenges in Large-Scale Software
Development: A Case Study of Planning Misalignment in Hybrid Set-
tings: this is the detailed description of one of the SAP cases by Bick”.
In: IEEE Transactions on Software Engineering, title=Coordination
Challenges in Large-Scale Software Development: A Case Study of
Planning Misalignment in Hybrid Settings 44.10 (2018), pp. 932-950.
ISSN: 1939-3520. DOTI: [10.1109/TSE.2017.2730870.

S. Bick et al. “Coordination Challenges in Large-Scale Software
Development: A Case Study of Planning Misalignment in Hybrid
Settings”. In: IEEE Transactions on Software Engineering 44.10
(2018), pp. 932-950. DOI: 10. 1109/TSE. 2017 . 2730870.

Finn Olav Bjgrnson and Torgeir Dingsgyr. “Transitioning from a First
Generation to Second Generation Large-Scale Agile Development
Method: Towards Understanding Implications for Coordination”. In:
Agile Processes in Software Engineering and Extreme Programming —
Workshops. Ed. by Maria Paasivaara and Philippe Kruchten. Vol. 396.
Lecture Notes in Business Information Processing. Cham: Springer
International Publishing, 2020, pp. 84-91. 1SBN: 978-3-030-58857-1.
DOI: [10.1007/978-3-030-58858-8{_1}9.

B. Boehm and R. Turner. “Using risk to balance agile and plan-driven
methods”. In: Computer 36.6 (2003), pp. 57-66. DOI: 10.1109/MC.
2003.1204376.

Pear]l Brereton et al. “Lessons from Applying the Systematic Liter-
ature Review Process within the Software Engineering Domain”. In:
J. Syst. Softw. 80.4 (Apr. 2007), pp. 571-583. 1sSN: 0164-1212. DOTI:
10.1016/j.jss.2006.07.009. URL: https://doi.org/10.1016/j.
jss.2006.07.009.

Manfred Broy and Marco Kuhrmann. “Projektorganisation und
Management im Software Engineering”. In: Springer-Verlag, 2013,
pp. XVI, 416. ISBN: 978-3-642-29289-7. DOI: 10.1007/978-3-642-
29290-3|

T. Chau, F. Maurer, and G. Melnik. “Knowledge sharing: agile
methods vs. Tayloristic methods”. In: WET ICE 2003. Proceedings.
Twelfth IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003. 2003, pp. 302-307.
DOI: 110.1109/ENABL.2003.1231427.

"communication, n." In: OED Online. Oxford University Press, Mar.
2021. URL: https://oed.com/view/Entry/373097redirectedFrom=
communication/ (visited on 03/08/2021).

https://doi.org/10.1109/TSE.2017.2730870
https://doi.org/10.1109/TSE.2017.2730870
https://doi.org/10.1007/978-3-030-58858-8{_}9
https://doi.org/10.1109/MC.2003.1204376
https://doi.org/10.1109/MC.2003.1204376
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1007/978-3-642-29290-3
https://doi.org/10.1007/978-3-642-29290-3
https://doi.org/10.1109/ENABL.2003.1231427
https://oed.com/view/Entry/37309?redirectedFrom=communication
https://oed.com/view/Entry/37309?redirectedFrom=communication

BIBLIOGRAPHY 97

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Daniela S. Cruzes and Tore Dybéa. “Research synthesis in software
engineering: A tertiary study”. In: Information and Software Tech-
nology 53.5 (2011). Special Section on Best Papers from XP2010,
pp. 440-455. 18SN: 0950-5849. DOI: https://doi.org/10.1016/j.
infsof . 2011.01.004. URL: https://www.sciencedirect . com/
science/article/pii/S095058491100005X.

José Adson O.G. Cunha, Hermano P. Moura, and Francisco J.S.
Vasconcellos. “Decision-making in Software Project Management: A
Systematic Literature Review”. In: Procedia computer science 100
(2016), pp. 947-954. 1sSN: 1877-0509. DOI: 10.1016/j.procs.2016.
09.255. URL: https://doi.org/10.1016/j.procs.2016.09.255,

A. Danait. “Agile offshore techniques - a case study”. In: Agile Devel-
opment Conference (ADC’05). IEEE Comput. Soc, 2005, pp. 214-217.
ISBN: 0-7695-2487-7. DOI: |10.1109/ADC.2005.9.

Claudia de O. Melo et al. “Interpretative case studies on agile
team productivity and management”. In: Information and Software
Technology 55.2 (2013). Special Section: Component-Based Software
Engineering (CBSE), 2011, pp. 412-427. 1sSN: 0950-5849. DOI: https:
//doi.org/10.1016/j.infsof .2012.09.004. URL: https://www.
sciencedirect.com/science/article/pii/S09505684912001875.

"decision-making, (n.d)". In: Collins English Dictionary — Complete
and Unabridged. 2014. URL: https://www.thefreedictionary.com/
decision-making (visited on 04/24,/2021).

J. F. DeFranco and P. A. Laplante. “Review and Analysis of Software
Development Team Communication Research”. In: IEEE Transac-
tions on Professional Communication 60.2 (2017), pp. 165-182. DOI:
10.1109/TPC.2017.2656626. URL: https://doi.org/10.1109/TPC.
2017 .2656626.

Joanna DeFranco and Phillip Laplante. “A software engineering team
research mapping study”. In: Team Performance Management 24
(June 2018), pp. 203-248. DOI: 10.1108/TPM-08-2017-0040. URL:
https://doi.org/10.1108/TPM-08-2017-0040.

Torgeir Dingsgyr, Nils Brede Moe, and Eva Amdahl Seim. “Coordi-
nating Knowledge Work in Multiteam Programs: Findings From a
Large-Scale Agile Development Program”. In: Project Management
Journal 49.6 (2018), pp. 64-77. DOI: 10.1177/8756972818798980.
eprint: https://doi.org/10.1177/8756972818798980. URL: https:
//doi.org/10.1177/8756972818798980.

https://doi.org/https://doi.org/10.1016/j.infsof.2011.01.004
https://doi.org/https://doi.org/10.1016/j.infsof.2011.01.004
https://www.sciencedirect.com/science/article/pii/S095058491100005X
https://www.sciencedirect.com/science/article/pii/S095058491100005X
https://doi.org/10.1016/j.procs.2016.09.255
https://doi.org/10.1016/j.procs.2016.09.255
https://doi.org/10.1016/j.procs.2016.09.255
https://doi.org/10.1109/ADC.2005.9
https://doi.org/https://doi.org/10.1016/j.infsof.2012.09.004
https://doi.org/https://doi.org/10.1016/j.infsof.2012.09.004
https://www.sciencedirect.com/science/article/pii/S0950584912001875
https://www.sciencedirect.com/science/article/pii/S0950584912001875
https://www.thefreedictionary.com/decision-making
https://www.thefreedictionary.com/decision-making
https://doi.org/10.1109/TPC.2017.2656626
https://doi.org/10.1109/TPC.2017.2656626
https://doi.org/10.1109/TPC.2017.2656626
https://doi.org/10.1108/TPM-08-2017-0040
https://doi.org/10.1108/TPM-08-2017-0040
https://doi.org/10.1177/8756972818798980
https://doi.org/10.1177/8756972818798980
https://doi.org/10.1177/8756972818798980
https://doi.org/10.1177/8756972818798980

98

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

BIBLIOGRAPHY

Tore Dyba and Torgeir Dingsoyr. “Agile Project Management:
From Self-Managing Teams to Large-Scale Development”. In: 2015
IEEE/ACM 37th IEEE International Conference on Software
Engineering. IEEE, 2015, pp. 945-946. 1SBN: 978-1-4799-1934-5. DOL:
10.1109/ICSE.2015.299.

Emam Hossain, Paul L Bannerman, and Ross Jeffery, eds. Towards an
Understanding of Tailoring Scrum in Global Software Development:
A Multi-case Study: Proceedings of the 2011 International Conference
on Software and Systems Process. New York, NY: ACM, 2011. 1SBN:
9781450307307. DOI: 110.1145/1987875.1987894.

Ismael Edrein Espinosa-Curiel et al. “Analysis of the changes in
communication and social interactions during the transformation
of a traditional team into an agile team”. In: Journal of Software:
FEvolution and Process 30.9 (2018), e1946. 1sSSN: 20477473. DOI: 10.
1002/smr. 1946,

Robert Feldt et al. “Four commentaries on the use of students and
professionals in empirical software engineering experiments”. In: (Jan.
2018).

FO Bjgrnson et al., eds. Inter-team Coordination in Large-Scale Agile
Development: A Case Study of Three Enabling Mechanisms. 2018.
DOI: 110.1007/978-3-319-91602-6{_}15.

Cristiano P. Godoy et al. “Blueprint Model: A new Approach to
Scrum Agile Methodology”. In: 2019 ACM/IEEFE 14th International
Conference on Global Software Engineering (ICGSE). IEEE, 2019,
pp- 95-99. 1sBN: 978-1-5386-9196-0. DOI: [10 . 1109 / ICGSE . 2019 .
00014.

Rajeev Kumar Gupta and Prabhulinga Manik Reddy. “Adapting
Agile in a Globally Distributed Software Development”. In: 2016 49th
Hawaii International Conference on System Sciences (HICSS). IEEE,
2016, pp. 5360-5367. 1SBN: 978-0-7695-5670-3. DOTI: |10.1109/HICSS.
2016.663.

Rajeev Kumar Gupta, Mekanathan Venkatachalapathy, and Ferose
Khan Jeberla. “Challenges in Adopting Continuous Delivery and
DevOps in a Globally Distributed Product Team: A Case Study of
a Healthcare Organization”. In: 2019 ACM/IEEE 1jth International
Conference on Global Software Engineering (ICGSE). IEEE, 2019,
pp. 30-34. 1sBN: 978-1-5386-9196-0. DOI: |10 . 1109 / ICGSE . 2019 .
00020.

https://doi.org/10.1109/ICSE.2015.299
https://doi.org/10.1145/1987875.1987894
https://doi.org/10.1002/smr.1946
https://doi.org/10.1002/smr.1946
https://doi.org/10.1007/978-3-319-91602-6{_}15
https://doi.org/10.1109/ICGSE.2019.00014
https://doi.org/10.1109/ICGSE.2019.00014
https://doi.org/10.1109/HICSS.2016.663
https://doi.org/10.1109/HICSS.2016.663
https://doi.org/10.1109/ICGSE.2019.00020
https://doi.org/10.1109/ICGSE.2019.00020

BIBLIOGRAPHY 99

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Rajeev Kumar Gupta et al. “Key Factors in Scaling up Agile Team
in Matrix Organization”. In: Proceedings of the 12th Innovations on
Software Engineering Conference (formerly known as India Software
Engineering Conference) - ISEC’19. Ed. by Ravindra Naik et al.
New York, New York, USA: ACM Press, 2019, pp. 1-5. ISBN:
9781450362153. DOI: 110.1145/3299771.3299793.

Lise Tordrup Heeager and Peter Axel Nielsen. “Meshing agile and
plan-driven development in safety-critical software: a case study”.
In: Empirical Software Engineering 25.2 (2020), pp. 1035-1062. 1SSN:
1382-3256. DOI: 110.1007/s10664-020-09804-z.

Helen Sharp, Rosalba Giuffrida, and Grigori Melnik, ed. Information
Flow within a Dispersed Agile Team: A Distributed Cognition Perspec-
tive. XP 2012: Agile Processes in Software Engineering and Extreme
Programming. 2012. DOI: [10.1007/978-3-642-30350-0{_}5.

R. Hoda, J. Noble, and S. Marshall. “Self-Organizing Roles on Agile
Software Development Teams”. In: IEEE Transactions on Software
Engineering 39.3 (2013), pp. 422-444. poI1: |10.1109/TSE. 2012. 30.

Paula Jarzabkowski, Jane Lé, and Martha Feldman. “Toward a The-
ory of Coordinating: Creating Coordinating Mechanisms in Practice”.
In: Organization Science 23 (Aug. 2012), pp. 907-927. DOI: |10.2307/
23252441.

Bent Jensen and Alex Zilmer. “Cross-Continent Development Using
Scrum and XP”. In: LNCS 2675 (2003), pp. 146-153.

Jingyue Li, Nils B. Moe, and Tore Dyba, eds. Transition from a Plan-
Driven Process to Scrum — A Longitudinal Case Study on Software
Quality. 2010. DOI: 110.1145/1852786.1852804.

Nesma Keshta and Yasser Morgan. “Comparison between traditional
plan-based and agile software processes according to team size &
project domain (A systematic literature review)”. In: 2017 8th IEEE
Annual Information Technology, Electronics and Mobile Communi-
cation Conference (IEMCON). IEEE, 2017, pp. 567-575. ISBN: 978-
1-5386-3371-7. pDOI: 110.1109/IEMCON. 2017 .8117128. URL: https:
//doi.org/10.1109/IEMCON.2017.8117128.

Suhyun Kim et al. “Our Journey to Becoming Agile: Experiences
with Agile Transformation in Samsung Electronics”. In: 2016 25rd
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2016,
pp. 377-380. 1SBN: 978-1-5090-5575-3. DOI: [10.1109/APSEC . 2016 .
064l

https://doi.org/10.1145/3299771.3299793
https://doi.org/10.1007/s10664-020-09804-z
https://doi.org/10.1007/978-3-642-30350-0{_}5
https://doi.org/10.1109/TSE.2012.30
https://doi.org/10.2307/23252441
https://doi.org/10.2307/23252441
https://doi.org/10.1145/1852786.1852804
https://doi.org/10.1109/IEMCON.2017.8117128
https://doi.org/10.1109/IEMCON.2017.8117128
https://doi.org/10.1109/IEMCON.2017.8117128
https://doi.org/10.1109/APSEC.2016.064
https://doi.org/10.1109/APSEC.2016.064

100

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

BIBLIOGRAPHY

Andreas Kornstadt and Joachim Sauer. “Mastering Dual-Shore De-
velopment — The Tools and Materials Approach Adapted to Agile
Offshoring”. In: (2007). DOI: [10.1007/978-3-540-75542-5_7. URL:
https://doi.org/10.1007/978-3-540-75542-5_7.

Maarit Laanti. “Implementing Program Model with Agile Principles
in a Large Software Development Organization”. In: 2008 32nd
Annual IEEE International Computer Software and Applications
Conference. IEEE, 2008, pp. 1383-1391. 1SBN: 978-0-7695-3262-2.
DOI: [10.1109/COMPSAC.2008.116.

Lucas Layman et al. “Essential communication practices for Extreme
Programming in a global software development team”. In: Information
and Software Technology 48.9 (2006), pp. 781-794. 1SSN: 0950-5849.
DOI: [10.1016/j . infsof .2006.01.004.

Seiyoung Lee and Hwan-Seung Yong. “Distributed agile: project man-
agement in a global environment”. In: Empirical Software Engineering
15.2 (2010), pp. 204-217. 1sSN: 1382-3256. DOI: 10. 1007 /s10664 -
009-9119-7.

Pernille Lous et al. “From Scrum to Agile: a Journey to Tackle
the Challenges of Distributed Development in an Agile Team”. In:
Proceedings of the 2018 International Conference on Software and
System Process. Ed. by Marco Kuhrmann, Rory V. O’Connor, and
Dan Houston. New York, NY, USA: ACM, 2018, pp. 11-20. ISBN:
9781450364591. DOI: 110.1145/3202710.3203149.

Kjell Lundene and Parastoo Mohagheghi. “How autonomy emerges as
agile cross-functional teams mature”. In: Proceedings of the 19th In-
ternational Conference on Agile Software Development: Companion.
Ed. by Ademar Aguiar. New York, NY, USA: ACM, 2018, pp. 1-5.
ISBN: 9781450364225. DOI: [10.1145/3234152.3234184.

F. Lunenburg. “Mechanistic-Organic Organizations — An Axiomatic
Theory : Authority Based on Bureaucracy or Professional Norms”. In:
2012.

Thomas W. Malone and Kevin Crowston. “The Interdisciplinary
Study of Coordination”. In: ACM Comput. Surv. 26.1 (Mar. 1994),
pp. 87-119. 18sN: 0360-0300. DOI: 10 . 1145 /174666 . 174668. URL:
https://doi.org/10.1145/174666.174668.

Mary McGuir, ed. Team Software Development Techniques. Associ-
ation for Computing Machinery - New YorkNYUnited States, 1986.
DOI: [10.1145/317210.317234.

https://doi.org/10.1007/978-3-540-75542-5_7
https://doi.org/10.1007/978-3-540-75542-5_7
https://doi.org/10.1109/COMPSAC.2008.116
https://doi.org/10.1016/j.infsof.2006.01.004
https://doi.org/10.1007/s10664-009-9119-7
https://doi.org/10.1007/s10664-009-9119-7
https://doi.org/10.1145/3202710.3203149
https://doi.org/10.1145/3234152.3234184
https://doi.org/10.1145/174666.174668
https://doi.org/10.1145/174666.174668
https://doi.org/10.1145/317210.317234

BIBLIOGRAPHY 101

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Orla McHugh, Kieran Conboy, and Michael Lang. “Using Agile
Practices to Build Trust in an Agile Team: A Case Study”. In:
Information Systems Development. Ed. by Jaroslav Pokorny et al.
New York, NY: Springer New York, 2011, pp. 503-516. 1SBN: 978-1-
4419-9790-6.

Germano Duarte Mergel, Milene Selbach Silveira, and Tiago Silva da
Silva. “A Method to Support Search String Building in Systematic
Literature Reviews through Visual Text Mining”. In: Proceedings
of the 30th Annual ACM Symposium on Applied Computing. SAC
"15. Salamanca, Spain: Association for Computing Machinery, 2015,
pp. 1594-1601. 1SBN: 9781450331968. DOI: 10 . 1145 / 2695664 .
2695902, URL: https://doi.org/10.1145/2695664.2695902

Marius Mikalsen et al. “Agile Autonomous Teams in Complex
Organizations”. In: Agile Processes in Software Engineering and
Extreme Programming — Workshops. Ed. by Rashina Hoda. Vol. 364.
Lecture Notes in Business Information Processing. Cham: Springer
International Publishing, 2019, pp. 55-63. 1SBN: 978-3-030-30125-5.
DOI: [10.1007/978-3-030-30126-2{_1}7.

N. B. Moe, T. Dingsgyr, and T. Dyba. “Understanding Self-
Organizing Teams in Agile Software Development”. In: 19th
Australian Conference on Software Engineering (aswec 2008). 2008,
pp. 76-85. DOI: 10.1109/ASWEC.2008.4483195.

N. B. Moe, Torgeir Dingsgyr, and Knut Rolland. “To schedule or
not to schedule? An investigation of meetings as an inter-team
coordination mechanism in largescale agile software development”. In:
International Journal of Information Systems and Project Manage-
ment 6.3 (2018), pp. 45-59. DOI: 10.12821/13jispm060303.

Nils Brede Moe et al. “Coaching a Global Agile Virtual Team”.
In: 2015 IEEE 10th International Conference on Global Software
Engineering. IEEE, 2015, pp. 33-37. ISBN: 978-1-4799-8409-1. DOI:
10.1109/ICGSE.2015.26. URL: https://doi.org/10.1109/ICGSE.
2015.26.

Nils Brede Moe et al. “Enabling Knowledge Sharing in Agile Virtual
Teams”. In: 2016 IEEE 11th International Conference on Global
Software Engineering (ICGSE). IEEE, 2016, pp. 29-33. 1SBN: 978-
1-5090-2680-7. DOI: [10.1109/ICGSE.2016.30. URL: https://doi.
org/10.1109/ICGSE.2016. 30.

Nils Brede Moe et al. “Networking in a large-scale distributed
agile project”. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement -
ESEM ’14. Ed. by Maurizio Morisio. New York, New York, USA:

https://doi.org/10.1145/2695664.2695902
https://doi.org/10.1145/2695664.2695902
https://doi.org/10.1145/2695664.2695902
https://doi.org/10.1007/978-3-030-30126-2{_}7
https://doi.org/10.1109/ASWEC.2008.4483195
https://doi.org/10.12821/ijispm060303
https://doi.org/10.1109/ICGSE.2015.26
https://doi.org/10.1109/ICGSE.2015.26
https://doi.org/10.1109/ICGSE.2015.26
https://doi.org/10.1109/ICGSE.2016.30
https://doi.org/10.1109/ICGSE.2016.30
https://doi.org/10.1109/ICGSE.2016.30

102

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

BIBLIOGRAPHY

ACM Press, 2014, pp. 1-8. 1SBN: 9781450327749. por: [10 . 1145/
2652524 . 2652584,

Parastoo Mohagheghi, Casper Lassenius, and Ingrid Omang Bakken.
“Enabling Team Autonomy in a Large Public Organization”. In:
Agile Processes in Software Engineering and Extreme Programming —
Workshops. Ed. by Maria Paasivaara and Philippe Kruchten. Vol. 396.
Lecture Notes in Business Information Processing. Cham: Springer
International Publishing, 2020, pp. 245-252. 1SBN: 978-3-030-58857-
1. DOI: 10.1007/978-3-030-58858-8{_}25.

Karthik Mohanarangam. “Transitioning to Agile—In a Large Organi-
zation”. In: IT Professional 22.2 (2020), pp. 67-72. 1SSN: 1520-9202.
DOI: [10.1109/MITP . 2019.2902345. URL: https://doi.org/10.
1109/MITP.2019.2902345.

A B M Moniruzzaman and Syed Hossain. “Comparative Study on
Agile software development methodologies”. In: (July 2013).

Monteiro, Cleviton V.F. and da Silva, Fabio QQ.B. and dos Santos,
Isabella R.M. and Farias, Felipe and Cardozo, Elisa S.F. and do
A. Leitdo, André R.G. and Neto, Dacio N.M. and Pernambuco
Filho, Miguel J.A. “A Qualitative Study of the Determinants of Self-
managing Team Effectiveness in a Scrum Team”. In: 2011. DOI: [10.
1145/1984642.1984646.

Erik Moore. “Influence of Large-Scale Organization Structures on
Leadership Behaviors”. In: 2009 Agile Conference. TEEE, 2009,
pp. 309-313. 1SBN: 978-0-7695-3768-9. DOI: |10.1109/AGILE.2009. 14.

Christopher Nelson and Jung Soo Kim. “Integration of Software
Engineering Techniques Through the Use of Architecture, Process,
and People Management: An Experience Report”. In: LNCS 3475 -
(2005), pp. 1-10.

Anh Nguyen-Duc, Daniela S. Cruzes, and Reidar Conradi. “The
impact of global dispersion on coordination, team performance and
software quality — A systematic literature review”. In: Information
and Software Technology 57 (2015), pp. 277-294. 1SSN: 0950-5849.
DOIL: https : //doi . org/10. 1016/ j . infsof . 2014 . 06 . 002.
URL: https://www.sciencedirect . com/science/article/pii/
S0950584914001414l

Ramon Noordeloos, Christina Manteli, and Hans van Vliet. “From
RUP to Scrum in Global Software Development: A Case Study”.
In: 2012 IEEE Seventh International Conference on Global Software
Engineering. ITEEE, 2012, pp. 31-40. 1SBN: 978-1-4673-2357-4. DOI:
10.1109/ICGSE.2012.11.

https://doi.org/10.1145/2652524.2652584
https://doi.org/10.1145/2652524.2652584
https://doi.org/10.1007/978-3-030-58858-8{_}25
https://doi.org/10.1109/MITP.2019.2902345
https://doi.org/10.1109/MITP.2019.2902345
https://doi.org/10.1109/MITP.2019.2902345
https://doi.org/10.1145/1984642.1984646
https://doi.org/10.1145/1984642.1984646
https://doi.org/10.1109/AGILE.2009.14
https://doi.org/https://doi.org/10.1016/j.infsof.2014.06.002
https://www.sciencedirect.com/science/article/pii/S0950584914001414
https://www.sciencedirect.com/science/article/pii/S0950584914001414
https://doi.org/10.1109/ICGSE.2012.11

BIBLIOGRAPHY 103

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

Helga Nyrud and Viktoria Stray. “Inter-team coordination mecha-
nisms in large-scale agile”. In: Proceedings of the XP2017 Scientific
Workshops on - XP ’17. Ed. by Roberto Tonelli. New York, New
York, USA: ACM Press, 2017, pp. 1-6. ISBN: 9781450352642. DOI:
10.1145/3120459.3120476.

"organize, v." In: OED online. Oxford University Press, Mar. 2021.
URL: https://oed.com/view/Entry/ 132456 7 redirectedFrom=
organize| (visited on 03/09/2021).

"organizing, (n.d)". In: Collins English Dictionary — Complete and
Unabridged. 2014. URL: https : //www . thefreedictionary . com/
organizing (visited on 04/24/2021).

Maria Paasivaara, Ville T. Heikkila, and Casper Lassenius. “Expe-
riences in Scaling the Product Owner Role in Large-Scale Globally
Distributed Scrum”. In: 2012 IEEE Seventh International Conference
on Global Software Engineering. IEEE, 2012, pp. 174-178. 1SBN: 978-
1-4673-2357-4. DOI1: [10.1109/ICGSE.2012.41.

Maria Paasivaara and Casper Lassenius. “Communities of practice in
a large distributed agile software development organization — Case
Ericsson”. In: Information and Software Technology 56.12 (2014),
pp. 1556-1577. 1SSN: 0950-5849. por: 10. 1016/ j . infsof . 2014 .
06.008.

Maria Paasivaara and Casper Lassenius. “Communities of practice in
a large distributed agile software development organization — Case
Ericsson”. In: Information and Software Technology 56.12 (2014),
pp. 1556-1577. 1SSN: 0950-5849. por: 10. 1016/ j . infsof . 2014 .
06.008.

Maria Paasivaara et al. “Large-scale agile transformation at Ericsson:
a case study”. In: Empirical Software FEngineering 23.5 (2018),
pp. 2550-2596. 1SSN: 1382-3256. DOI: 110.1007/s10664-017-9555-8.

Georgios Papadopoulos. “Moving from Traditional to Agile Software
Development Methodologies Also on Large, Distributed Projects”. In:
Procedia - Social and Behavioral Sciences 175 (2015), pp. 455-463.
ISSN: 18770428. DOI: |10.1016/j.sbspro.2015.01.1223.

Ravi Paul, John R. Drake, and Huigang Liang. “Global Virtual Team
Performance: The Effect of Coordination Effectiveness, Trust, and
Team Cohesion”. In: IEEE Transactions on Professional Commu-
nication 59.3 (2016), pp. 186-202. 1SSN: 0361-1434. poI: 10.1109/
TPC.2016.2583319. URL: https://doi.org/10.1109/TPC.2016.
2583319.

https://doi.org/10.1145/3120459.3120476
https://oed.com/view/Entry/132456?redirectedFrom=organize
https://oed.com/view/Entry/132456?redirectedFrom=organize
https://www.thefreedictionary.com/organizing
https://www.thefreedictionary.com/organizing
https://doi.org/10.1109/ICGSE.2012.41
https://doi.org/10.1016/j.infsof.2014.06.008
https://doi.org/10.1016/j.infsof.2014.06.008
https://doi.org/10.1016/j.infsof.2014.06.008
https://doi.org/10.1016/j.infsof.2014.06.008
https://doi.org/10.1007/s10664-017-9555-8
https://doi.org/10.1016/j.sbspro.2015.01.1223
https://doi.org/10.1109/TPC.2016.2583319
https://doi.org/10.1109/TPC.2016.2583319
https://doi.org/10.1109/TPC.2016.2583319
https://doi.org/10.1109/TPC.2016.2583319

104

[75]

[76]

[77]

78]

[79]

[30]

[81]

[82]

[83]

BIBLIOGRAPHY

Lene Pries-Heje and Jan Pries-Heje, eds. Why Scrum Works: A Case
Study from an Agile Distributed Project in Denmark and India: 927
like a SoS example. 2011. DOI: [10.1109/AGILE.2011.34.

B. V. Rajeev and Vinod Hejib. “Control based management to self
organizing agile teams - A case study”. In: Proceedings of the 13th
International Conference on Global Software Engineering. Ed. by
Maria Paasivaara, Darja Smite, and Roberto Evaristo. New York,
NY, USA: ACM, 2018. 1sBN: 9781450357173. DOI:|10.1145/3196369.
3196394.

R. ChandanaK. Ranasinghe and Indika Perera. “Effectiveness of
scrum for offshore software development in Sri Lanka”. In: 2015
Moratuwa Engineering Research Conference (MERCon). IEEE, 2015,
pp- 306-311. 1SBN: 978-1-4799-1740-2. DOI: [10.1109/MERCon . 2015.
7112364. URL: https://doi.org/10.1109/MERCon.2015.7112364.

Raoul Vallon, Stefan Strobl, Mario Bernhart, Thomas Grechenig.
“Inter-organizational Co-development with Scrum: Experiences and

Lessons Learned from a Distributed Corporate Development Envi-
ronment: LNBIP 149 -”. In: ap 2013 (2013).

Marc Rettig and Gary Simons. “A project planning and development
process for small teams”. In: Communications of the ACM 36.10
(1993), pp. 45-55. 1SSN: 0001-0782. DOI: [10.1145/163430. 163440,

Roopa M. S.,; Ratnanabh Kumar, and V. S. Mani. “Transitioning
from plan-driven to lean in a global software engineering organization:
a practice-centric view”. In: Proceedings of the 13th International
Conference on Global Software Engineering. Ed. by Maria Paasivaara,
Darja Smite, and Roberto Evaristo. New York, NY, USA: ACM, 2018,
pp. 1-5. 1SBN: 9781450357173. DOI: 10.1145/3196369.3196395.

Jeffrey S. Saltz and Ivan Shamshurin. “Achieving Agile Big Data
Science: The Evolution of a Team’s Agile Process Methodology”.
In: 2019 IEEE International Conference on Big Data (Big Data).
IEEE, 2019, pp. 3477-3485. 1SBN: 978-1-7281-0858-2. DOI: [10.1109/
BigData47090.2019.9005493.

Steve Sawyer. “Software development teams”. In: Communications of
the ACM 47.12 (2004), pp. 95-99. 1ssN: 0001-0782. por: 10.1145/
1035134.1035140.

Andre Scandaroli et al. “Behavior-Driven Development as an Ap-
proach to Improve Software Quality and Communication Across
Remote Business Stakeholders, Developers and QA: two Case Stud-
ies”. In: 2019 ACM/IEEE 14th International Conference on Global
Software Engineering (ICGSE). IEEE, 2019, pp. 105-110. 1SBN: 978-
1-5386-9196-0. DOI: 110.1109/ICGSE.2019.00030.

https://doi.org/10.1109/AGILE.2011.34
https://doi.org/10.1145/3196369.3196394
https://doi.org/10.1145/3196369.3196394
https://doi.org/10.1109/MERCon.2015.7112364
https://doi.org/10.1109/MERCon.2015.7112364
https://doi.org/10.1109/MERCon.2015.7112364
https://doi.org/10.1145/163430.163440
https://doi.org/10.1145/3196369.3196395
https://doi.org/10.1109/BigData47090.2019.9005493
https://doi.org/10.1109/BigData47090.2019.9005493
https://doi.org/10.1145/1035134.1035140
https://doi.org/10.1145/1035134.1035140
https://doi.org/10.1109/ICGSE.2019.00030

BIBLIOGRAPHY 105

[84]
[85]

[36]

[87]

[33]

[89]

[90]

[91]

[92]

Scrum Guide. URL: https://scrumguides.org/scrum-guide.html#
scrum-master (visited on 04/21/2021).

Scrum.org - What is a Scrum Master? URL: https://www.scrum.
org/resources/what-is-a-scrum-master (visited on 04/21/2021).

C. Sepulveda. “Agile development and remote teams: learning to love
the phone”. In: Proceedings of the Agile Development Conference,
2003. ADC 2003. TEEE, 2003, pp. 140-145. 1SBN: 0-7695-2013-8. DOI:
10.1109/ADC.2003.1231464. URL: https://doi.org/10.1109/ADC.
2003.1231464.

Mojtaba Shahin et al. “Adopting Continuous Delivery and Deploy-
ment: Impacts on Team Structures, Collaboration and Responsi-
bilities”. In: Proceedings of the 21st International Conference on
FEvaluation and Assessment in Software Engineering - EASE’17. Ed.
by Emilia Mendes, Steve Counsell, and Kai Petersen. New York, New
York, USA: ACM Press, 2017, pp. 384-393. 1SBN: 9781450348041.
DOI: [10.1145/3084226.3084263.

Helen Sharp and Hugh Robinson. “Three ‘C’s of Agile Practice:
Collaboration, Co-ordination and Communication”. In: Agile Software
Development: Current Research and Future Directions. Ed. by Torgeir
Dingsgyr, Tore Dyba, and Nils Brede Moe. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 61-85. ISBN: 978-3-642-12575-1.
DOI: 10.1007/978-3-642-12575-1_4. URL: https://doi.org/10.
1007/978-3-642-12575-1_4.

Helen Sharp et al. Remote working in an Agile team. Tech. rep. Agile
Research Network, 2016. URL: http://agileresearchnetwork.org/
wp - content /uploads /2016 /09 / Remoteworkingwhitepaper . pdf
(visited on 03/12/2021).

Darja Smite, Nils Brede Moe, and Richard Torkar. “Pitfalls in Remote
Team Coordination: Lessons Learned from a Case Study”. In: Product-
Focused Software Process Improvement. Ed. by Andreas Jedlitschka
and Outi Salo. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 345-359. 1SBN: 978-3-540-69566-0. URL: https://doi.org/10.
1007/978-3-540-69566-0_28.

Hubert Smits and Guy Pshigoda. “Implementing Scrum in a Dis-
tributed Software Development Organization”. In: Agile 2007 (AGILE
2007). IEEE, 2007, pp. 371-375. 1SBN: 0-7695-2872-4. DOI: 10.1109/
AGILE.2007.34.

Viktoria Stray and Nils Brede Moe. “Understanding coordination in
global software engineering: A mixed-methods study on the use of
meetings and Slack”. In: Journal of Systems and Software 170 (2020),
p. 110717. 18SN: 01641212. DOI: [10.1016/7.jss.2020.110717.

https://scrumguides.org/scrum-guide.html#scrum-master
https://scrumguides.org/scrum-guide.html#scrum-master
https://www.scrum.org/resources/what-is-a-scrum-master
https://www.scrum.org/resources/what-is-a-scrum-master
https://doi.org/10.1109/ADC.2003.1231464
https://doi.org/10.1109/ADC.2003.1231464
https://doi.org/10.1109/ADC.2003.1231464
https://doi.org/10.1145/3084226.3084263
https://doi.org/10.1007/978-3-642-12575-1_4
https://doi.org/10.1007/978-3-642-12575-1_4
https://doi.org/10.1007/978-3-642-12575-1_4
http://agileresearchnetwork.org/wp-content/uploads/2016/09/Remoteworkingwhitepaper.pdf
http://agileresearchnetwork.org/wp-content/uploads/2016/09/Remoteworkingwhitepaper.pdf
https://doi.org/10.1007/978-3-540-69566-0_28
https://doi.org/10.1007/978-3-540-69566-0_28
https://doi.org/10.1109/AGILE.2007.34
https://doi.org/10.1109/AGILE.2007.34
https://doi.org/10.1016/j.jss.2020.110717

106

193]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

BIBLIOGRAPHY

Jeff Sutherland et al. “Distributed Scrum: Agile Project Management
with Outsourced Development Teams”. In: 40th Hawaii International
Conference on System Sciences 2007 (2007). DOI: [10.1109/HICSS.
2007.180.

David Marcell Szabo and Jan-Philipp Steghofer. “Coping Strategies
for Temporal, Geographical and Sociocultural Distances in Agile
GSD: A Case Study”. In: 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2019, pp. 161-170. 1SBN: 978-1-7281-1760-7.
DOI: 110.1109/ICSE-SEIP.2019.00025.

C. M. Tartaglia and P. Ramnath. “Using open spaces to resolve cross
team issues”. In: Agile Development Conference (ADC’05). IEEE
Comput. Soc, 2005, pp. 173-179. 1SBN: 0-7695-2487-7. DOI:10.1109/
ADC.2005.49.

Omer Uludag et al. “Investigating the Adoption and Application
of Large-Scale Scrum at a German Automobile Manufacturer”. In:
2019 ACM/IEEE 14th International Conference on Global Software
Engineering (ICGSE). IEEE, 2019, pp. 22-29. 1SBN: 978-1-5386-9196-
0. DOI: 10.1109/ICGSE.2019.00019.

Uwe van Heesch. “Collaboration patterns for offshore software devel-
opment”. In: Proceedings of the 20th European Conference on Pattern
Languages of Programs - EuroPLoP ’15. Ed. by Veli-Pekka Eloranta
and Claudius Link. New York, New York, USA: ACM Press, 2015,
pp- 1-10. 1SBN: 9781450338479. DOI: 10 . 1145 /2855321 . 2855343
URL: https://doi.org/10.1145/2855321.2855343.

Andrew H. Van De Ven, Andre L. Delbecq, and Richard Koenig. “De-
terminants of Coordination Modes within Organizations”. In: Amer-
ican Sociological Review 41.2 (1976), pp. 322-338. 1SSN: 00031224.
URL: http://www.jstor.org/stable/2094477.

Richard Vidgen and Xiaofeng Wang. “Coevolving Systems and the
Organization of Agile Software Development”. In: Info. Sys. Research
20.3 (Sept. 2009), pp. 355-376. 1sSN: 1526-5536. DOI: [10.1287/isre.
1090.0237. URL: https://doi.org/10.1287/isre.1090.0237.

Jessica K. Winkler, Jens Dibbern, and Armin Heinzl. “The Impact
of Cultural Differences in Offshore Outsourcing: Case Study Results
from German-Indian Application Development Projects”. In: Infor-
mation Systems Outsourcing (2009). URL: https://doi.org/10.
1007/s10796-008-9068-5.

Claes Wohlin et al. “Experimentation in Software Engineering”. In:
Springer-Verlag Berlin Heidelberg, 2012, p. 236. ISBN: 978-3-642-
29044-2. DOI1: 10.1007/978-3-642-29044-2.

https://doi.org/10.1109/HICSS.2007.180
https://doi.org/10.1109/HICSS.2007.180
https://doi.org/10.1109/ICSE-SEIP.2019.00025
https://doi.org/10.1109/ADC.2005.49
https://doi.org/10.1109/ADC.2005.49
https://doi.org/10.1109/ICGSE.2019.00019
https://doi.org/10.1145/2855321.2855343
https://doi.org/10.1145/2855321.2855343
http://www.jstor.org/stable/2094477
https://doi.org/10.1287/isre.1090.0237
https://doi.org/10.1287/isre.1090.0237
https://doi.org/10.1287/isre.1090.0237
https://doi.org/10.1007/s10796-008-9068-5
https://doi.org/10.1007/s10796-008-9068-5
https://doi.org/10.1007/978-3-642-29044-2

BIBLIOGRAPHY 107

[102] Monica Yap. Successful Distributed Agile Team Working Patterns.
2010. URL: https : / / api . semanticscholar . org / CorpusID :
14506646 (visited on 04,/26/2021).

https://api.semanticscholar.org/CorpusID:14506646
https://api.semanticscholar.org/CorpusID:14506646

108 BIBLIOGRAPHY

	Introduction
	Problem statement
	Solution Approach

	Related Work
	Teams in Software Engineering
	Organization of Development Teams

	Foundations
	Terminology and Context
	Guidelines for Development Teams
	Systematic Literature Review

	Methodology: A SLR
	Planning Phase
	Step 1: Research Questions
	Step 2: Database Selection
	Step 3: Search String
	Step 4: Inclusion and Exclusion Criteria

	Execution Phase
	Data Collection
	Data Analysis

	Findings
	Data Analysis
	Research Questions
	RQ1: Structures for team organization
	RQ2: Practices for team organization

	Discussion
	Organizational team structures and practices
	Implications for practice
	Generalizability, Limitations and Threats to Validity

	Model
	Model Presentation
	Proposed Team Structure Templates
	Team structures A1 to A4
	Team structures T4 to T1

	Summary and Future Work
	Review Protocol
	Search String
	Research Questions
	Inclusion Criteria
	Exclusion Criteria
	Database Selection
	Search Process

	Data Extraction Form
	Selected Primary Studies

