
Gottfried Wilhelm

Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik

Institut für Praktische Informatik

Fachgebiet Software Engineering

Literature review and concept for

cooperation in software development

Literaturstudie und Konzept für Zusammenarbeit bei der

Softwareentwicklung

Masterarbeit

im Studiengang Informatik

von

Meriem Haltiti

Prüfer: Prof. Dr. Kurt Schneider

Zweitprüfer: Prof. Dr. Joel Greenyer

Betreuer: M. Sc. Melanie Busch

Hannover, 03. Juni 2019

ii

iii

Erklärung der Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig

und ohne fremde Hilfe verfasst und keine anderen als die in der Arbeit

angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit hat in

gleicher oder ähnlicher Form noch keinem anderen Prüfungsamt vorgelegen.

Hannover, den 03. Juni 2019

Meriem Haltiti

iv

v

Zusammenfassung

Softwareprojekte werden immer komplexer. Mit steigende Anzahl der

Methoden, Klassen und Objekten, steigt die Komplexität. Darüber hinaus

tragen die verschiedenen Beziehungen zwischen den Elementen und die

Anzahl der Mitarbeiter, die das gleiche Projekt bearbeiten und erweitern,

der Komplexität bei. Demzufolge wird es schwierig, ein Softwareprojekt

zu erfassen. Das Verständnis erfordert viel Expertise und Fachkenntnisse.

Infolgedessen ist der Entwickler die meiste Zeit damit beschäftigt, einen

unbekannten Code zu editieren und zu verstehen. Um den Überblick über

das Projekt zu behalten, werden Ansätze verwendet, die den Entwicklern

dabei unterstützen die Zusammenarbeit zu verbessern.

Diese Arbeit zielt darauf ab, alle diese Ansätze aus den letzten 15 Jahren

der Literatur zusammenzufassen und zu bewerten. Diese Ansätze dienen

der Lenkung der Aufmerksamkeit in der Zusammenarbeit des Entwicklers

auf den wichtigen Teil des Codes oder des Dokuments. Danach werden

diese Ansätze kategorisiert und untereinander verglichen. Auÿerdem werden

die verschiedenen Techniken, mit denen die Aufmerksamkeit des Entwick-

lers gemessen wird, zusammengefasst. Die Wechselwirkung zwischen der

Aufmerksamkeit des Entwicklers und der kollaborativen Programmierung

wird somit erläutert. Die Visualisierung zeigt die Lücken und Gemein-

samkeiten in diesem Forschungsbereich auf. Der letzte Teil beinhal-

tet Diskussionen und Interpretationen, um Möglichkeiten für zukünftige

Forschungen zu erö�nen.

vi

vii

Abstract

Software projects are becoming ever more complex. This complexity

increases with the rising number of its di�erent methods, classes, and objects.

Besides, the di�erent relationships between each component and the number

of the employees add to the complexity. Each developer is expanding,

changing, �xing, and reviewing the same project. As a consequence, the

software project becomes di�cult to grasp. A lot of knowledge and expertise

are needed to understand it. Therefore, the developer spends most of his time

manipulating and comprehending an unfamiliar code. To keep track of the

project, approaches are used by the developer to enhance the collaboration

between the team members.

This thesis aims to review and synthesize all these approaches that

guide the attention of the developer toward the relevant part in the code

or the document at the cooperation spanning the past 15 years of literature.

After that, these approaches are categorized, then compared. Additionally,

the di�erent techniques for measuring the attention of the developer are

summarized, and the reciprocity between the attention of the developer

and collaborative programming is explained. Visualizations are designed

to highlight the gaps and similarities in this research area. In the end, a

discussion and an interpretation are held in order to open opportunities for

future research.

viii

ix

Acronyms

AOIArea Of Interest

CAISECollaborative Architecture for Iterative

Software Engineering

CRIContinuum of Relevance Index

CSECollaborative Software Engineering

CVSConcurrent Versioning System

EBSEEvidence-Based Software Engineering

EEGElectroencephalographie

FASTDashFostering Awarness for Software Teams

Dashboard

fMRI functional Magnetic Resonance Imaging

IDE Integrated Development Environment

PROMPRO Metrics

SLRSystematic Literature Review

TeamWATCHTeam-based Workspace Awarness Toolkit

and Collaboration Hub

TTFFTime To First Fixation

UMLUni�ed Modeling Language

x Acronyms

xi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.3 Scope of the research . 2

1.4 Stucture of the research . 2

2 Theory 5

2.1 Systematic literature review 5

2.2 Snowballing research procedure 7

2.3 Collaboration in software engineering 10

2.4 Program comprehension . 11

3 Related work 15

3.1 Program comprehension . 15

3.2 Software visualization . 17

3.3 Eye tracking . 18

4 Review method 21

4.1 Research question and search String 21

4.2 Inclusion and exclusion criteria 24

4.3 Method of selection of the primary studies 25

4.4 Results of the Selection . 26

4.5 Analysis of the papers . 28

4.5.1 Start Set paper . 29

4.5.2 First iteration . 32

4.5.3 Second iteration . 36

4.5.4 Third iteration . 40

4.5.5 Fourth iteration . 42

xii CONTENTS

5 Results 43

5.1 RQ1: Approaches to steer the attention of the user 46

5.1.1 Attention sharing by collaborative visualization tools . 48

5.1.2 Attention sharing by IDE plug-ins 50

5.1.3 Attention sharing by face to face collaboration 55

5.2 RQ2: Attention measurement during collaborative program-

ming . 56

5.2.1 Eye tracking . 56

5.2.2 Multichannel Electroencephalographie (EEG) device . 57

5.2.3 Observation . 58

5.3 RQ3: Correlation between collaboration and attention data . 59

5.4 Threats to validity . 60

6 Evaluation and discussion 61

6.1 Evaluation features . 61

6.2 Approaches evaluation . 63

6.3 Gaps and similarities . 66

6.3.1 Modi�ed Venn diagram 66

6.3.2 Radar chart . 68

6.3.3 Stacked bar chart . 71

6.4 Discussion . 74

7 Summary and outlook 77

7.1 Summary . 77

7.2 Outlook . 78

A Evaluation of collaborative visualisation tools 93

B Summarisation of the literature review papers 97

C Types of awareness information 101

1

Chapter 1

Introduction

1.1 Motivation

The environment of software engineering is continuously changing. From

simple keystrokes to sophisticated functional applications coupling many

interlocking pieces such as objects, classes and methods, software systems are

developed. The target of software engineering is to decompose sophisticated

functionality into independent although connected modules. The modules

are used in order to speed up the process of the development. They are done

to avoid reimplementing the same code for similar functions in every new

project. Henceforth, this procedure involves collaboration [35]. Software

development is not only collaborative but also a knowledge-intensive process

[41]. Besides, the long duration of the project, di�erent employees such as

developer, software architect, stakeholder, etc., make the knowledge transfer

problematic.

Moreover, it is challenging to verbally transfer knowledge and expertise.

However, a major problem with this kind of process is, spending the majority

of the time, comprehending an unfamiliar code and seeking consistent

information that may sometimes be �nished unsuccessfully. The lack of

tracking of all the relevant processes of the development, makes the software

development task di�cult. The programmer cannot follow all the changes

and loses the overview of the accomplished and not accomplished tasks. Also

in most cases, he is confronted with editing or debugging an unfamiliar code.

This challenging environment pushes the developer to regularly rethink and

adapt their development processes to new conditions in order to stay aware

2 CHAPTER 1. INTRODUCTION

of all changes and recommendations.

As this continuous change becomes the norm, the software developer has

to use approaches that support him to focus on the relevant part in the

document or the code. Furthermore, this support helps him to maintain an

overview of the complete project, to enhance their program understanding

and to assure him more �exibility in the team.

1.2 Goal

The main of this thesis is to provide a literature review that documents

several key contributions made to the �elds of software engineering in steering

the attention of the developer during software development. The goal of

this contributions is to enhance the program comprehension and maintain

an overview of the important activities during collaborative programming.

Secondly, gaps and similarities between these retrieved approaches will be

identi�ed visualized, and then assessed.

1.3 Scope of the research

This thesis focuses on determining all of the approaches that are used to steer

the attention of the developer during collaborative programming. After that,

these approaches are classi�ed through the art of sharing the attention of the

developer. Following this, an evaluation of these approaches is done and a

visualization is conceived to give an outline of the similarities and gaps of

the retrieved approaches. Last but not least, conclusions and implications

are also presented to support several possible future directions in this �eld.

1.4 Stucture of the research

The overall structure of the study takes the form of seven chapters, including

this introductory chapter. Chapter two begins by laying out the theoretical

dimensions of the research, and looks at how key terms are de�ned in the

literature review. The third chapter is concerned with the methodology

used for this study, which is systematic literature review with snowballing

procedure. The fourth chapter describes the followed review methods and

the analysis of the retrieved papers. The �fth chapter presents the �ndings of

1.4. STUCTURE OF THE RESEARCH 3

the research, focusing on the three key themes that are: classi�cation of the

approaches, attention measurement during collaborative programming and

the correlation between collaboration and the attention of the developer.

The sixth chapter is designed for the implications and discussion. The �nal

chapter draws upon the entire thesis, tying up the followed steps in this

review and the important �ndings as well as an outlook to future research

into this area.

4 CHAPTER 1. INTRODUCTION

5

Chapter 2

Theory

The aim of this chapter is to shed light on the theoretical approaches that

found this thesis. The basis of systematic literature review and snowballing

research procedures will be described. Next, collaboration in software

engineering and program comprehension will be explained.

2.1 Systematic literature review

A Systematic Literature Review (SLR) is a form of secondary study, which

refers to identifying, evaluating and interpreting of all primary studies that

are related to a particular research question, topic area or a phenomenon.

Primary studies refer to the studies that contribute to the systematic review

[26].

It uses the evidence-based paradigm in software engineering. Kitchenham

proposes the introduction of this paradigm. The aim of Evidence-Based

Software Engineering (EBSE) is recapitulated by Kitchenham [19], as

follows: "to provide how current best evidence from research can be

integrated with practical experience and human values in the decision making

process regarding the development and maintenance of software".

Therefore, this review makes a signi�cant contribution to provide reliable

and unbiased results. The main advantage of SLR is not only summarising all

available approaches that are related to a speci�c �eld, but also identifying

all gaps and similarities of these approaches. The SLR is a background

for further investigations that can be used by other researchers to gain

time and e�ort [26]. SLR is distinguished over the conventional form of

6 CHAPTER 2. THEORY

literature review through di�erent features such as the de�nition of the

research questions, inclusion, and exclusion criteria in the beginning of the

review, the speci�cation of the search strategy of the primary studies, the

documentation of all the steps and the assessment of all primary studies.

According to Kitchenham [26], the steps of SLR are divided into three

major stages. They are illustrated in �gure 2.1.

Review
planning

Identification of the review needs

Definition of research question

Developement of the review protocol

Review
conducting

Identification of the research

Selection of the primary research

Evaluation of the study quality

Synthesis data

Review
reporting

Writing the report

Validation of the report

stage

stage

stage

Figure 2.1: Systematic Literature Review process based on Kitchenham
guidelines [26]

Each stage of the �gure 2.1 will be discussed in detail in the following

step [26].

Stage 1: Review planning

The �rst stage is based on understanding the need for the review.

Research questions and validation of the review protocol are done in this

step. The keywords will be extracted from the research questions. This

2.2. SNOWBALLING RESEARCH PROCEDURE 7

phase is crucial because it helps the reviewer to stay in the subject. The

protocol will include the background, context of the research, search strategy

and selection criteria of the selected papers [26].

Stage 2: Review conducting

The second stage is based on the search of the evidence to answer the

research questions, and then to identify the primary studies. In the following

step, the study quality is assessed.

The search consists of inserting the search string with the prede�ned

keywords in the selected database. The search string is combined from a

Boolean operator such as "AND", "OR" and "NOT" and the keywords;

synonyms of the keywords are also taken into account. After inserting the

search-string in the selected databases, the retrieved papers will be assessed.

Exclusion and inclusion criteria will be applied �rst through the title, second

through the abstract, and then through the whole paper. This step is done

to assure that only the relevant papers will be selected. The selected papers

will be de�ned as the primary study and will be included in the review.

Later, these primary studies will be summarized [26].

Stage 3: Review reporting

Last but not least, the third stage "Review reporting" consists of the

outcome of all the previous steps which includes the writing and the

validation of the report. The whole process can be repeated many times

until a transparent, understandable, and reproducible review is reached.

The iteration can be done primarily in the stage of planning the review

so that inclusion and exclusion criteria can be rede�ned; the extraction of

the required data can be done many times after applying the quality criteria

[26].

2.2 Snowballing research procedure

The goodness of a SLR is dependent especially on the search procedure. The

quality of the search is signi�cant for the e�ciency and the reliability of the

retrieved papers [61].

In SLR, the search of all relevant papers is very challenging on account

of the quality of the search string, the choice of the databases and island

8 CHAPTER 2. THEORY

papers. These criteria in�uence the results. That is why a search procedure

should be used to support the exploration of all relevant papers. In this

review, the snowballing search procedure is applied. It inheres to handling

the reference list of a paper or citations of the paper to determine further

papers. The search is �nished when no new relevant papers are found. This

search procedure is divided into two main phases: Start set, backward and

forward snowballing [61]. The illustration of this procedure can be seen in

�gure 2.2.

Figure 2.2: Snowballing procedure according to Wohlin (p. 4,[61])

Start set

Start set refers to identifying the base of the papers that will be used for

the snowballing iterations. The formulated search string is inserted in the

prede�ned databases in order to identify relevant papers for the review. This

step is very challenging because the search goodness of the further papers

is based on this start set. The start set presents the base of the next steps.

2.2. SNOWBALLING RESEARCH PROCEDURE 9

For this reason some criteria are de�ned to assure a reliable start set such

as [61]:

• The number of papers in the start set should be moderate (not too

small or too big).

• Selected papers in the start set should come from di�erent communi-

ties.

• The start set should be based on the keywords and their synonyms.

Snowballing iteration

After establishing the start set, the snowballing iteration that includes

backward and forward snowballing must be done. This step can be iterated

many times until no new papers are found.

Backward snowballing:

Backward snowballing adopts the reference list to elect new papers. The

�rst step is to go through the reference list and exclude papers that do

not accomplish clear criteria such as time frame and language. Then the

duplicates are eliminated from the list of the previous steps. After that,

the inclusion criterion are applied to the papers through title, abstract and

the whole document. First, the papers that are found through the reference

list are evaluated over three steps. The title is examined at �rst. Inclusion

criteria are applied on the title. The reviewer decides about the relevance

of the candidate paper; if the paper is relevant, inclusion criteria should be

applied on their abstract. If not the paper is discarded. In the next step,

the evaluation is based on the whole content. In this way, the relevance and

the e�ciency of the papers will be guaranteed [61].

Forward snowballing:

It refers to identifying new papers based on those papers citing the article

being examined. Each document citing the examined paper must be checked.

The citations can be found in Google Scholar. Each candidate citing this

studied paper are kept in this stage.

Likewise in the backward step, it is essential to decide for each new paper

on either inclusion or exclusion. The snowballing iteration should be done

10 CHAPTER 2. THEORY

several times until no new relevant papers are detected and a rollback can

be done in the two steps of snowballing procedure [61].

The snowballing procedure is very challenging and requires a lot of e�ort.

Recent cases reported by Wohlin [61] also support that the e�ciency of this

research procedure is only 6.8%. For this reason, the author suggests some

lessons to better perform the search with this method [61]:

• The frequency of papers identi�ed in each step of the snowballing

should be followed. If a good start set is de�ned, the number of new

papers to be included will decrease after each iteration.

• When the number of the detected new relevant papers increases, the

search should be executed once again taking into account synonyms.

If the number of retrieved paper permanent increases, this means

that there is a cluster of relevant papers missed due to ignoring some

synonyms.

2.3 Collaboration in software engineering

As was pointed out in the chapter 1 of this thesis, software engineering is a

collaborative process. Many programmers, software engineers, and architects

coordinate their e�orts to develop a large, complex and error-free software.

The main drawback is that, most of the time, collaboration is a di�cult task

due to the ambiguity of the conversations between the team members and

the limitation of the human brain to memorize every detail in the project.

Due to these reasons, software collaboration techniques have evolved to

address these constraints. Whitehead et al. [60] de�ned six main targets

of this technique in his paper such as identifying, recording and resolving

errors, recording organizational memory, and reducing dependencies among

engineers. For more details, all goals and de�nitions of this technique are

available in Whitehead's paper.

Another key term to de�ne techniques to support the collaboration in

the software engineering �eld especially in programming is "collaborative

programming". This concept is a development approach that tends to

be used to refer to the coordination of the individual programming tasks

of programmers in order to perform a large and complex project [36].

Nowadays, collaborative software development is continuously expanding

2.4. PROGRAM COMPREHENSION 11

[8]. The leading cause of this expansion is not only the augmentation

of the number of outsourcing and o�shoring projects. Team members of

these projects are sometimes distributed over the globe, there are several

advantages that team members can bene�t from when they work in a team

[8]. The key strengths of this method of work are the extended focusing

on productive activities, the easy sharing of knowledge, the uninterrupted

working sessions. Besides, the cost of the project is reduced, and the code

quality is better [53].

Collaborative programming has many speci�cations. For example both

novice and expert programmers can work together. Also, the team members

can work into a distinct role, such as driver or navigator. This type of

collaboration can be done, when they work with the same display, computer,

mouse, and keyboard [11]. The driver uses the mouse and the keyboard

to navigate and implement. The navigator, on the other hand, inspects

for faults. Moreover, the collaboration can be distributed; that assures

more �exibility to the developers. However, problem-solving in distributed

collaboration is ambiguous despite the triviality of solving these issues in

co-located teams [8].

Besides, the collaboration can be done in pair. Hannay et al. [22]

conducted a meta-analysis on the e�ectiveness of pair programming in

software engineering. The results of his study show that in low programming

task complexity,one pair is agiler and faster than one programmer. Also

the accuracy is better by complex programming tasks. In addition, very

complex tasks can be accomplished by pair programmers but not by a single

programmer [22].

2.4 Program comprehension

The expressions "software comprehension" and "program comprehension"

are both used to express the same concept. According to Deimel et al.

[15], software comprehension can be de�ned as follows: "the process of

constructing the knowledge domains and relations among them from the

code, comments, and whatever other documentation is available" . Besides

Müller et al. [34] suggested to de�ne it as: "building mental models of

various abstraction levels, emerging from models of the code itself, to models

of the underlying application domain, for maintenance, evolution, and re-

12 CHAPTER 2. THEORY

engineering purposes".

There has been numerous studies to investigate this research area due

to the importance of program comprehension in the work process of the

developer. It is the central activity of programming while it is a step to reach

any goal namely �xing bug, maintenance or changing code etc. Program

comprehension is essentially a cognitive process. Developers are continuously

trying to understand an unfamiliar source code or to comprehend their code

[51]. Currently the researches categorizes program comprehension into three

main strategies:

Top-Down comprehension strategy:

This model is suitable for programmers that are familiar with a program's

domain. The developer bene�ts from his know-how and his experience to

suggest a hypothesis about the program goal and tries to compare the current

code with others he knows [59].

Bottom-Up comprehension strategy:

This model is suitable for programmers that are unfamiliar with a program's

domain or with the source code. The developers read the code carefully

in detail and then group mentally the lines of code to build high-level

abstractions. The aim is to a�rm a hypothesis [51].

Integrated strategy:

The developer mixes both top-down and bottom-up models when one model

is not su�cient [59].

Letovsky et al. [28] are convinced that developers are opportunistic so

that they are able to take advantage on both top-down and bottom-up

strategy. They suggest a comprehension model that is composed of three

key elements as follows: knowledge base, assimilation process and mental

model. O'Brien et al. [39] have updated the model of Letovsky et al. [28]

and proposed a similar model but with four components. They added the

external representation component. The �gure 2.3 illustrates the proposed

model by O'Brien et al.

It provides an overview of the key components of the understanding

process. Firstly, "external representation" refers to external support that

aid the developer by understanding the code. This support can be a tool, a

2.4. PROGRAM COMPREHENSION 13

Figure 2.3: Components of software comprehension model according to
O'Brien (p. 3,[39])

documentation, the source code itself or the advice from other programmers

etc. Secondly, "knowledge base" represents the experience and knowledge of

the developer before trying to understand the code. Thirdly, "mental model"

refers to the instant representation of the developer. The mental model

is continuously incremented while understanding. Finally, "assimilation

process" represents the actual approach to comprehend the source code.

Knowledge base and mental model are both used to achieve the assimilation

process [39].

The process of program comprehension is a topic of interest. For more

than 30 years, numerous studies have been conducted. The researchers

invest a lot of e�ort and time to investigate how a developer comprehends

a program. But how can the level of understanding be measured so that

the e�ectiveness of the used strategy can be evaluated? To address this

question, Siegmund [51] wrote a review that summarizes all the approaches

that were applied in order to measure the software understanding over more

than 30 years citation. The author notices that the most used approaches

are think-aloud protocols, memorization and comprehension tasks. In light

of the enhancement of the technologies, the diversity of programming tools

and Integrated Development Environment (IDE), measuring the cognitive

process during programming was very challenging. For this reason, another

new approaches have been applied such as functional Magnetic Resonance

Imaging (fMRI) and EEG signal.

Siegmund [51] is not only interested on the past and present approaches

14 CHAPTER 2. THEORY

but predicted also the tasks and the future approaches that will be used.

The author anticipates that a new model of program comprehension will be

conceived. The source-code level will not be the centre of interest but the

software comprehension tasks of the future will be included in the overview of

the complete program, the hierarchy between the structure, the correlation

between the components and the task activity of each developer in the team.

She was right in her prediction because as pointed out in the motivation, the

goal of this review is to summarize the approaches that are used to steer

the attention of the developer in order to maintain an overview of the large

software and to enhance the awareness inside the team [51].

15

Chapter 3

Related work

This thesis aims to review papers about steering the attention of the devel-

oper during collaborative programming in order to maintain an overview of

the important parts in the document or the code and to enhance the program

comprehension. In the software engineering �eld, there is no systematic

literature about this theme. For this reason, this chapter will combine

the done systematic literature reviews about tools that supports program

comprehension, software visualization tools and eye tracking methods that

are considered to maintain the overview.

The �rst section will include research area from program comprehension,

the second section will encompass the works about software visualization and

the third section will inhere systematic literature review about eye tracking

methods.

3.1 Program comprehension

Program comprehension is not a goal in achieving but a necessary step

to achieve some other aims like �xing errors, maintenance, reusing code,

refactoring, testing, analysis of changed or functionality change of a program,

etc. Storey [55] provides an excellent study inspired by a literature review

about theories, tools and research methods in program comprehension over

the past thirty years and gives predictions for future works. She covered

the fundamental cognitive theories of program comprehension and used it

to examine the tools that support program comprehension. The correlation

between the performance of the tools and the theories is also studied to

16 CHAPTER 3. RELATED WORK

assess the available tools. Classi�cation of both theories and tools are also

done conforming to the context, type of the program and individual aspect.

Finally, a prediction for future work is made [55].

The tools that support program comprehension are of signi�cant interest

within this review. Storey [55] summarized the requirement that should

be present to support the program comprehension according to the recom-

mendation of researchers after performing studies with expert programmers

in an industrial environment. Di�erent researchers recommend concept

assignment problem, reverse engineering tool needs, the importance of search

and history, information needs for maintainers and software visualization

tool needs, all of these features. The replacement of one feature or the

addition of another is not a trivial task. For this reason, each feature will be

brie�y de�ned and each programmer should choose the appropriate features

according to his needs.

After explaining the feature requirement, Storey [55] categorized the

programmer (distributed team, agile developer, etc.) and program charac-

teristics (distributed application, diverse source of information, etc.). Storey

has not only summarized the past and present theories, but also she gives

guidance to develop the tools and the theories in the future. She criticizes

the available research methods and gives some advice on how to address the

issues. For example, she evoked that experiments in an industrial setting

a�ord divers organizational challenges like the massive amount of information

provided by observations, make the data analyzes problematic. Moreover,

the Hawthorne e�ect is unavoidable. Due to these reasons, Storey suggests

using benchmarks and collaborative tool demonstrations in order to compare

their tools with others and understand the gaps and similarities between the

approaches. She emphasizes that the goal is to understand why the tool is

better than the others in the aim of enhancing the tools. In the other hand,

she is convinced to ameliorate the theories by providing the documentation

and results to other researchers so that they can understand the data and

the conclusions [55].

Last but not least, she predicted that the �eld of program comprehension

would incur more importance due to the enhanced technologies as well dif-

ferent researchers from di�erent domains becoming interested in recognizing

the cognitive and social aspects of this research area [55].

Despite Storey [55], Schröter et al. [47] conducted a systematic literature

3.2. SOFTWARE VISUALIZATION 17

review about understanding studies about program comprehension . The

central question in this dissertation asks "how researchers address program

comprehension" according to the context, terminology, and threats to

validity. The authors studied 540 research papers published at ICPC between

2006 and 2016. Before answering the �rst question, the authors categorized

the program comprehension into seven parts (i.e., source code, program

behaviour, testing, API, requirements, documentation, and miscellaneous).

This systematic literature review aims to give an overview of the progress

of the published papers over time and to evaluate the speci�cation of the

author about the research area and their assessment. According to this

review, source code and program behaviour are the two parts of most interest.

Moreover, the ambiguous terminology makes the search and the comparisons

of the study more di�cult. Besides, the evaluation of the threats to validity

proves that newly quality of papers is enhanced [47].

3.2 Software visualization

The focus of software visualization area is to visualize the structure,

behaviour, and evolution of software. For Mattila et al. [33], software

visualization refers to "visualizing various aspects and artifacts related to

software". From this de�nition, various aspects of software engineering can

be interpellated for instance program comprehension and comprehension of

a software process. She conducted a systematic literature review of the

research papers that were presented from 2010 to 2015. The scope of this

survey is to address the following two perspectives about the focus and the

maturity of the software visualization �eld. 83 papers are included in this

survey. According to the results of this survey, di�erent tasks are supported

by software visualization such as program comprehension, collaboration, and

engagement, maintenance, etc.

Moreover, software visualization deals with change over time for instance

structure of the software, working habits, performance, dependencies,

states of project, resource usage, time, software product line variants,

user's activities, data �ow, and work�ow. Besides, hierarchical or graph

visualizations are the most used visualization methods; this result can be

explained through the main task of a visualization tool that is understanding

the structure and the behaviour of the code. Geometric projection techniques

18 CHAPTER 3. RELATED WORK

like polymetric views, city metaphor, and tag clouds are also often applied

in the visualization. Another important �nding is that generally source code

and software execution data are employed as a source for data visualization

tools. As regards to the maturity of software visualization, Mattila et al.

noticed that 90% of the papers discuss new visualization tools and 10% of

the rest focuses on the evaluation of the method or using existing methods

in the new research area. Interestingly, she observed that only 20% of the

papers include the research questions directly and 67.5% assessed their new

tool or method [33].

In contrast to Mattila et al. [33], Seriai et al. [48] conducted a systematic

literature review on the techniques that are applied to validate software

visualization tools. 87 research papers which were published between 2000

and 2012 are included in the survey. The result of the study shows that

72.5% of the research papers include a precise assignment; 77% of the

studies use open source projects data to evaluate their tool. 60.9% of the

researchers employ objective measures for example time task completion,

and the number of failures. Surprisingly, 70.1% of the studies are without

participants; the tools are only compared directly with other tools [48].

3.3 Eye tracking

Eye tracking is a new data collection method in the software engineering �eld.

The collected data is the visual attention of the user. It can be displayed

and used for di�erent tasks.

Shara� et al. [49] performed a systematic literature review that covers

the usage of eye tracking in software engineering between 1990 and 2014. The

survey includes 36 publications. They provide many details on the history

of eye-tracking and the various setup of devices. Henceforth, the researchers

apply eye trackers to examine code comprehension, debugging, collaborative

interaction, model comprehension and traceability. Furthermore, di�erent

metrics based on the eye movement are employed to assess the visual e�ort

of the participants and highlight the way of detecting the stimuli. The

disadvantages of eye tracking are also determined. Interestingly, Shara� et

al. [49] noticed that the researchers use SLR despite the drawbacks that this

method had.

Complementary to Shara� et al. [49], Obaidellah et al. [38] report the

3.3. EYE TRACKING 19

results on the usage of eye-tracking in computer programming [38]. He

analyzes the results of the studies in relation to the experimental setup.

In this review, types of participants, and trackers are taken into account.

He includes the publications that are published between 1990 and 2017. A

total of 63 studies are used. Shara� et al. [49], Obaidellah et al. [38] use the

same categorization of programming tasks. Obaidellah et al. [38] identify

that nowadays program comprehension and debugging reach a higher level of

interest, in contrast to non-code comprehension, collaborative programming,

and traceability. Researchers, students as well as faculty members take part

on the most studies. Also, they report that the most used tool to track the

attention is eye-tracker Tobii [38].

20 CHAPTER 3. RELATED WORK

21

Chapter 4

Review method

This chapter describes the steps used in this literature review that is based

on the guidelines of a systematic literature review by Kitchenham [26]. The

�rst section de�nes the research question and search string. The second part

presents the inclusion and exclusion criteria. The third part discusses the

method of selection of the papers. The fourth part gives an overview of

the retrieved results. The �fth part moves on to analyze the content of the

�ndings in greater detail .

4.1 Research question and search String

The de�nition of the research question is fundamental in the literature

review. It helps the author to focus on the important topic of the research

and it is also crucial for the reader, since it outlines the literature that will

be examined in this review. This research seeks to address the following

questions:

RQ 1:

What are the approaches that are used to steer the attention of the developer

and to support him to have an overview on the whole project or to understand

a part of a document?

RQ 2:

What are the di�erent techniques that are used to measure the attention of

the developer during program comprehension?

22 CHAPTER 4. REVIEW METHOD

RQ 3:

How is the interplay between collaboration and the attention of the developer

investigated?

In table 4.1, the research question will be brie�y explained as follows:

Table 4.1: Target of the research questions

Research Target
question

RQ 1 Determine which approaches are used to steer
the attention, to support the developer and
to maintain the overview of the project and
how they can be used.

RQ 2 Identify and analyze the techniques that are
used to measure the attention of the developer.

RQ 3 Determine the correlation between the attention
of the developer and the collaboration level.

The table 4.1 includes the research questions and the focus of these

questions. The objective of the three questions is to recognize the

approaches and the techniques that are used to steer the attention and to

support the understanding of the developer during the software development.

Furthermore, to measure their attention during this process, and after that

to detect the relation between the collaboration level and the attention of

the developer.

After de�ning the research questions, the next step will be the de�nition

of the keywords. They are used to highlight the important words to

answer the research questions by forming the search string. Similar terms

of the main concepts should be also taken into account. The keywords

are formulated as follows: attention, collaboration, cooperation, teamwork,

program comprehension, program understanding, program debugging and

software development. From these keywords, a search string is created to

address the research question.

4.1. RESEARCH QUESTION AND SEARCH STRING 23

Search string:

("program comprehension" OR "program understanding" OR "program

debugging")

AND (collaboration OR teamwork OR cooperation)

AND ("software engineering" OR "software development")

AND attention

NOT education

NOT network

The search string above consists on the combination of the previously

de�ned keywords. The terms "program comprehension" OR "program

understanding" OR "program debugging" are fundamental in the case of

this study because the target is tracking the behaviour of the developer

until the program comprehension process. The words "understanding" and

"comprehension" are used synonymously to reach the highest number of

relevant papers but "debugging" is used to reach the paper that seeks to

address program debugging. The Boolean operator "OR" is used because

a minimum of one of this terms is needed. "Software engineering" is the

�eld of the study, it is used to limit the �eld of the search and "Software

development" is inserted to insist on the process of the development.

"attention" is the most important word in the review. It is the basis

of the theme because the aim is to steer the attention of the developer

during software development in teamwork and how this information can

in�uence the e�ciency and the accuracy of the collaborative work. It is

used to pick all the papers that are related to the attention of the developer.

"Collaboration", "cooperation" and "teamwork" are synonyms which explain

why an OR operator is put between each word. These three keywords

are crucial because the attention should be evaluated in a collaborative

environment. All these keywords are connected with AND operator because

all these keywords should be included in a document to be more likely to

attain the relevant paper. The NOT operator is also used to eliminate some

topics that should not be included. For example: education and network.

The majority of papers that include the word "education" are also excluded

as this word represents "the eLearning" �eld and education in a classroom.

In the end, the word "network" is discarded because it includes the domain

24 CHAPTER 4. REVIEW METHOD

of the network and network security.

4.2 Inclusion and exclusion criteria

The exclusion and inclusion criteria in table 4.2 are adopted to elect the

relevant papers to review.

Table 4.2: Inclusion and exclusion criteria applied to the review

Criteria Desription

Inclusion IC1 The paper presents an experimentation or an
empirical study.

IC2 The paper is a descriptive analysis.
IC3 The paper is a peer-reviewed contribution to

a conference or a journal.
IC4 Papers published between 2003 and 2018.

Exclusion EC1 The paper has no accordance with at least three
of the search keywords.

EC2 Focus on the di�erence between male or female
and disabled and not disabled persons.

EC3 Paper is not accessible.
EC4 The Paper is duplicate.
EC5 Paper is not in English.

As shown in table 4.2, the criteria that are used, are divided into inclusion

and exclusion. Inclusion criteria are de�ned in advance to identify subjects

which will be included in a research study.

IC1: The paper presents an experimentation or empirical study in

program comprehension, this inclusion criteria is very important for the

review because experimentation or an empirical study must be done to orient

the attention of the developer during the program comprehension.

IC2: The paper is a descriptive analysis of program understanding. This

inclusion criterion is crucial because the analysis should be inside the team

that will participate in the experimentation. A summary of the behaviour

of each developer must be done to make conclusions.

IC3: The paper should be peer reviewed because this is a literature

review and only peer-reviewed articles should be selected.

IC4: The papers that are published between 2003 and 2018 are included

due to the rapid development of the technology since 2003.

4.3. METHOD OF SELECTION OF THE PRIMARY STUDIES 25

Now, the exclusion criteria will be discussed. This criterion is also

determined forward to elect the peer-reviewed papers that responds to the

research questions.

EC1: The paper has no accordance with at least three of the search

keywords. This exclusion criteria is decisive under the importance of the

keywords that are included in the search string.

EC2: The experiment should not focus on the di�erence between male

or female and disabled and not disabled persons. The aim of this review is

to take general conclusions.

EC3, EC4: Not accessible and duplicate papers are an exclusion

criterion. It is evident that duplicated or not accessible papers cannot be

used.

EC5: Paper is not in English. This exclusion criteria is adopted because

this review is designed to the international researcher.

4.3 Method of selection of the primary studies

After de�ning the search string and the inclusion and exclusion criteria. The

search string is inserted in �ve databases such IEEExplore ,SpringerLink

,ACM digital library ,Science Direct ,and Google Scholar. These databases

are the most relevant on the software engineering �eld except for Google

Scholar is a multi-disciplinary database. Five databases are used in order to

seek the most possible relevant paper.

In this review, the selection of the studies took place in six steps. Firstly,

time range and language criteria are de�ned to decrease the number of the

outputs in order to facilitate the search on the relevant paper. Secondly, the

selection of primary studies is based on the title. If the decision based on

the title is ambiguous, the abstract should be read to decide if the article

should be included in the start set or not. Thirdly, the decision making is

based on the abstract. The reviewer should read the abstract then decide

about the relevance of the paper. If the article has remained, the fourth step

should be achieved. The reviewer should read the whole paper, then judge

the importance of the paper. The selected papers are considered as the start

set. In the �nal step, forward and backward snowballing must be done as

pointed out in the chapter 2. This step must be done until no relevant paper

is found.

26 CHAPTER 4. REVIEW METHOD

4.4 Results of the Selection

After inserting this search string in the �ve databases and using the exclusion

criteria of language and the time range of the publications, 140 papers

in IEEExplore, eleven papers in SpringerLink , 44 papers in ACM digital

library, 75 papers in Science Direct and 538 results (books, dissertations

and websites) in Google Scholar have been found. The search was done on

22.12.2018. The second step is to apply the inclusion and exclusion criteria to

the title, all the claims of papers that may not be included in our review must

be excluded. After this step, 20 documents in IEEExplore, three articles

in SpringerLink, eight papers in ACM digital library, ten papers in Science

Direct and 31 papers in Google Scholar are taken to the third step. 71 papers

�ts the scope of the research based on the title. The fourth step is eliminate

all the duplicates, so 62 papers are remaining for the next step. Now the

inclusion and exclusion must be applied to the abstract, so 13 papers remain

in the set. After reading all papers, six of the papers are retained in the

start set. In the next step, the snowballing search procedure is applied. The

backward and forward steps of snowballing are repeated �ve times until no

new relevant paper is found.

The table 4.3 reports the results of each iteration after applying the

inclusion and exclusion criteria based on the title, abstract and whole article.

Table 4.3: Snowballing iteration results after the inclusion and exclusion
criteria based on title, abstract and the whole text

Iteration number Backward Forward

1 3 5
2 4 4
3 1 2
4 1 0
5 0 0

The table 4.3 above illustrates the results of the forward and backward

steps of the Snowballing procedure after each iteration. Five iterations are

needed until no new relevant paper is found. Each document is evaluated

based on the inclusion and exclusion criteria and eliminating all duplicates.

In the backward snowballing, the references of the included papers are

studied to select more documents to add in the review. In the forward

4.4. RESULTS OF THE SELECTION 27

snowballing, the papers citing the papers in the start set are assessed. The

time range and the language are also taken into account. At this moment,

the snowballing is completed, but a roll-back can be done at any time. In the

following step of the review, 26 papers will be considered in more detail. The

following diagram reports the literature search strategy with the snowballing

technique.

ACM IEEE Google
scholar

Science-
Direct

Springerlink

44 Paper 140 Paper 538 Paper 75 Paper 11 Paper

808 Paper
Inserting
search string
on database

71 Paper

62 Paper

13 Paper

6 Paper

Filtering
based on the
title

Excluding

duplicates

Filtering
based on the
abstract

Filtering
based on the
content

Forward searchBackward search
9 Paper 11 Paper

Startset

26 Paper

Figure 4.1: Search with snowballing procedure end results

28 CHAPTER 4. REVIEW METHOD

From the �gure 4.1, an overview of the discovered papers during the

process of the search and how this number was developed, is shown. After

applying the criteria of the time range, language, type of document and

based on the title, 71 papers were identi�ed. After that all duplicates are

eliminated, 62 papers remain in the set. Subsequently, it is decided whether

or not the article should be included based on the abstract. 13 papers have

remained. In the next step, the papers are �ltered with respect to the

inclusion and exclusion criteria based on whole text, only six papers stay

in the set. The snowballing technique is applied �ve times until no new

article is found. In the backward snowballing, eight papers are selected after

considering the inclusion and exclusion criteria based on the title, abstract

and the whole text. As in forward snowballing, nine papers remain in the

set. In total 26 articles will be analyzed in the next step.

Start set

[44],[13],[57]
[64],[10],[5]

1.Iteration

B:[42],[43]
[16]

F:[14],[45]
[3],[29],[62]

2.Iteration

B:[40],[54]
[17],[25]

F:[6],[53]
[32],[8]

3.Iteration

B:[27]

F:[58],[9]

4.Iteration

B:[50]

F: no paper

Figure 4.2: Overview of the retrieved papers of each iteration

The �gure 4.2 illustrates the selected papers of the four iterations of the

snowballing procedure. The result of each iteration is divided into two parts

"B" means backward snowballing and "F" means forward snowballing.

4.5 Analysis of the papers

In this section, each paper of the set will be analyzed. This section is divided

into �ve parts. The �rst subsection includes the papers of the start set, from

the second to the �fth subsection the outputs of each iteration are included.

The papers of each part are named from Iij such that i denotes the number

of the iteration and j indicates the number of the identi�ed paper in this

iteration and for the paper of the start set i is equal to zero.

4.5. ANALYSIS OF THE PAPERS 29

4.5.1 Start Set paper

I01. Pietinen et al. [44] conduct an empirical study with a duration of

two months in industrial-like settings. The central point of this paper

is the relation between the eye movement of the developers during pair

programming and the e�ciency of their work. Eye tracking and verbal

protocols are used to record shared visual attention during collaborative

programming to propose novel eye-tracking metrics. The eye movement

and verbal protocols of two participants are simultaneously recorded for the

study. Only the initial results of this study are reported. A visualization of

the eye movement is displayed to �nd associations and conclusions about the

metrics that can be used for the next researches. The results obtained from

the observation of the eye movement indicate that the number of overlapping

�xation gives an account on the type of collaboration. For example, a high

rate of overlapping �xation is probably caused by a great collaboration, high

�xation duration on the overlapping �xation and also long gaze duration.

Therefore, this means that the developer has a comprehension problem. This

hypothesis will be tested in further research by Pietinen et al. [44].

I02. Cook et al. [13] report an empirical assessment of Collaborative

Software Engineering tools. The hypothesis of the author is as follows:

employing collaborative software engineering tools has a lot of advantages

for example in the task time completion. Twelve developers work in

pairs to complete a speci�c tasks. The participants work in two modes:

conventional and collaborative. Collaborative Architecture for Iterative

Software Engineering (CAISE) based Collaborative Software Engineering

(CSE) tool is used by each pair. The participants should modify the present

code. In conventional mode, the version control system alerts the user on

changes. However, in a collaborative way, the user can see the modi�cation

done by the other users, therefore, avoiding con�icts. Task completion

is used to assess the e�ectiveness of the use of CAISE in collaborative

programming. One way ANOVA is employed to analyze the measurement.

The obtained results prove that the task completion time in collaborative

mode is signi�cantly less than by conventional mode. A survey is also used

to analyze user preferences. The results of the survey accord with the earlier

�ndings, the users appreciate these tools [13].

I03. Sulir et al. [57] pilot two controlled experiments. In particular,

this paper will examine three main research questions: "1. Do programmers'

30 CHAPTER 4. REVIEW METHOD

mental model overlap? 2. How do developers use shared concern annotations

when they are available? 3. Does using annotations created by others

improve program comprehension and maintenance correctness, time and

con�dence?". The �rst experiment focused on the e�ect of annotations

in program comprehension and maintenance by students. It showed that

there is an overlap between mental models and used concern annotations.

Consequently, they can be shared. The statistical �nding of the �rst

study highlights the improvement of the development time by program

comprehension and maintenance tasks. The second experiment is nearby

the same as the �rst one, but it focuses on the industrial developers. This

experiment aims to study the correctness of the code when developers use

annotated code, although the results di�er slightly from those of the �rst

experiment. The time of development is slightly worse, but the task and

questions correctness is ameliorated. This results proved that the shared

annotations help the developers to enhance their program comprehension

especially by feature location and con�rmation of hypotheses and gaining

new information [57].

I04. Chu et al. [10] represent an observational study on pair

programming with two participants. This study is guided on pair program

comprehension and employs the examined results to create a tool that

contributes to collaborative awareness of a programmer. This research seeks

to address the following hypotheses: semi-structured goal-question evidence

methodology for program comprehension should be used to preserve an

overview of accessible documentation by the team member of a project. This

approach should have three aspects: re-documentation system should work

in parallel while programmers were developing, the knowledge and objective

of team should be dispersed in the group, and occurred problem should be

known by all member of the team. In order to prove these hypotheses,

an observational study is undertaken. The participants are observed while

they work in pairs with a digital video camera. Sound and image are

recorded for each session. The �ndings of this study (observed scenarios,

event magnitudes, and event relationships) are employed to develop a better

cognitive support tool for the program comprehension. The proposed

prototype "Pollinator" is an eclipse plug-in. The main functions of this

prototype are improving the collaborative programming and contributing

three views classi�ed by awareness, knowledge ,and comprehension building

4.5. ANALYSIS OF THE PAPERS 31

view. Program understanding project and user awareness information are

encompassed in awareness view. The target of program comprehension

are included in knowledge base awareness view. An hierarchical diagram

of comprehension can be performed among the comprehension view. The

�ndings of this study con�rmed that the research is on the right path and

the research will be completed [10].

I05. Zayour et al. [64] convey a qualitative study on debugging under

an enterprise IDE, in a real industrial setting. 17 programmers are observed

while dealing with bugs for 117 hours. Afterwards, they are questioned about

their resolution to solve the bugs, the cause of the di�culties after executing

multiple tasks. The goal of this experiment is to recognize the problems

that are related to the debugging under enterprise IDE. The results of this

study revealed that most debugging activities are associated with the type

of enterprise IDE. The most obvious �nding to emerge from this study is

that enterprise IDE platform enhances the way of work by developers. Thus

it organizes the work of the developer and lets him pro�t from the expertise

of the other programmers. The participants recommend some optimization

such as a better debugging and better reporting tool [64].

I06. Biehl et al. [5] report a �eld study about a new interactive

visualization technique Fostering Awarness for Software Teams Dashboard

(FASTDash).The target of this tool is to enhance the collaborative work in

software development for example by avoiding con�ict situation. FASTDash

displays the current activities of the developers using a dashboard or the

own display of each developer, for spatial representation of the shared code

base. To evaluate this tool, a survey, interviews and in situ observations

are done. Six experienced programmers participate in this observational

study. The participants are located in the same room. To categorize user

behaviour, new coding schemes are generated. Pre-FASTDash and Post-

FASTDash observations are achieved to deduce the e�ect of FASTDash on

the teamwork. The results of this study indicate that most of the participants

use the information about who is changing, what is changing, which �le

is checked out and error report to enhance their awareness while working.

Also, they use a di�erent source of information such as whiteboard, notes,

bug databases, and source code. But methods to improve the awareness

depend on the person. For example, participants that are accustomed to

agile methodology prefer verbal communication. Contrary to expectations,

32 CHAPTER 4. REVIEW METHOD

the use of the broad share dashboard impedes the work of the team for many

reasons. One main drawback is that the large shared workspace displays only

information about one developer at a time [5].

4.5.2 First iteration

I11. D'Angelo et al. [14] conduct a survey, pilot observation, study of remote

pair programming task ,and post-task questionnaire. Three teams take part

in this study. Video recorded observations and notes by the researchers are

used to analyze the approaches that are used in pair programming. The three

teams executed di�erent practices of pair programming. The target is to

analyze the eye gaze and video of the participant to enhance the collaboration

in the group. It uses the eye tracking and gaze awareness method to help

pairs to see what the other person is looking at in a code document. This

novel tool aims to improve the developer's ability to communicate about on-

screen locations e�ciently. This new approach allows the user to know where

his partner is looking and to change the colour when the pair is looking at

the same position on the screen. It is interesting to note that in most cases of

this study, the pair spends more time looking at the corresponding locations,

communication about reference point become faster and more successful [14].

I12. Roehm et al. [45] describe an observational study of 28 professional

developers from seven companies. An observation with the think-aloud

method and an interview are performed based on the program comprehension

of the programmer in industry. The purpose of this study is to follow the

strategies that are used, the information that is needed, the tools that are

used by the developer to comprehend a program and to test the validity of

hypotheses that are related to the program comprehension in industry. The

most striking result to emerge from the interview and observations is that the

programmers try themselves to understand the program instead of the �nal

user , and sometimes they clone the code to avoid program comprehension.

Another observation is that the developer prefers to communicate within a

team face to face rather than through documentation and the experience of

the developer equips him the understanding of the program. In contrast to

the �ndings of state of the art, program comprehension tools are unknown

or infrequently employed by the developer. This experiment con�rms the

existence of gaps between research and practice in program comprehension

�eld [45].

4.5. ANALYSIS OF THE PAPERS 33

I13. Baltes et al. [3] conduct a qualitative user study. Twelve developers

participate in pairs in this study. They work in two open source projects

in a controlled setting. The executed task consist of debugging a code

then answering a questionnaire. The target is to see how the developers

detect the bug and how they communicate the issues in a team and which

strategies are used to debug. To track the participants, pro�ling tools are

used to measure individual program runs and to display pro�ling information

in the source code view. This study is aimed at addressing the following

research questions: "1. how do developers navigate and what information

and representation is supportive for locating a performance bug? 2. How

do developers try to understand and explain the causes of performance

bugs?". On the �rst research question, this study found that two navigation

strategies are recognized. The �rst strategy is alternating between testing

and coding. The second strategy is tracking the path through the dynamic

call graph. Another �nding is that dynamic instances (calls as links) and

time consumption are very relevant to identify a bug. And adding these two

pieces of information in the code will be very helpful in enhancing the work

of the developer. In the second research question, this study has shown that

hypotheses and sketches are de�ned to help the team to detect the reason

for the bug and to explain it to each other [3].

I14. Pietinen et al. [42] introduce a framework that studies the visual

attention using eye-tracking during pair programming in the real world.

In this paper, challenges and requirements on the eye-tracking setup are

discussed as well as some software problems and solutions when eye-tracking

is used in pair programming. Two developers work in a pair in a distributed

environment. The eye movements of both programmers are recorded and

synchronized together. The �rst problem that occurs is the seat position of

the participant. It is not optimal for the eye tracker also the body movements

are not considered in this research although it is critical. The analysis of

eye gaze data is manual, due to the di�culty of the analysis as the video

that contains both developers eye-movements and the scene are on a single

screen. The second problem is the synchronization of the eye movements in

the same video. The solutions to these problems are explained in this study.

In conclusion, this paper seems to improve collaborative visual attention

analysis. Another �nding is that the available eye-tracking system does not

satisfy the requirement of the actual research, other systems should be added

34 CHAPTER 4. REVIEW METHOD

to reach good data quality[42].

I15. Maalej et al. [29] pilot an observational study, and an online

survey. 28 developers take part in this study. They ask �ve main research

questions as follows: "1. which strategies do developers follow to comprehend

programs? 2. which tools do developers use when understanding programs

and how? 3. which knowledge is important for developers during

comprehension tasks? 4. which channels do developers prefer to access

and share knowledge about software? 5. which problems are frequently

encountered by developers while exchanging knowledge about software?".

Think-aloud method and observation protocol are used to record the actions

of each participant so that answers about the research questions can be

found. The results of this study show that there is a gap between research

and practice, for example, program comprehension tools are not used in the

industry, besides researcher and professionals see program comprehension

di�erently. These di�erences can be explained by the lack of knowledge or

trust in the new program comprehension tools. Further reported �nding

shows that the strategy that is used by the developer to comprehend a

program depends on the task. As no strategy �ts all the tasks, the author

suggests integrating a context-aware tool to support the knowledge exchange

and to detect only the relevant information. The developer prefers face

to face communication rather than documentation, and their experience is

very crucial to comprehend the program. Furthermore, the channel that is

used to communicate knowledge is di�erent between the knowledge seeker

and knowledge provider. The seeker prefers project documents, familiar

team-mate but the provider prefers comments, notepads, etc. Also, the

problem that is detected inside the industry is that the documentation is

obsolete. Finally, there is a correlation between team size, previous open

source experience and the need for knowledge [29].

I16. Ye et al. [62] represent a newly developed tool Team-based

Workspace Awarness Toolkit and Collaboration Hub (TeamWATCH). The

purpose of this is to visualize developer activities using a 3-D city metaphor

to enhance the collaboration inside the team by maintaining awareness.

This tool allows the extraction of awareness information from the control

repository, local workspaces, and tracking system. Real-time and historical

data are also displayed. TeamWATCH permits the developer to choose

between two modes of visualization (overview of the team activities or

4.5. ANALYSIS OF THE PAPERS 35

individual activities). To test the e�ciency of this tool, the following

research question is asked: "do the developers who use TeamWATCH detect

and resolve potential con�icts earlier with lower merge con�icts, compared

with the developers who do not use TeamWATCH ?" A user study is

done to answer the previous question. The experimental data is collected

from di�erent sources (video recording, chat logs, Concurrent Versioning

System (CVS) repository, chat logs, and survey questions). Two groups

of participants are asked to accomplish the same �ve tasks (one group use

TeamWATCH and the other one not) and to answer a survey. After that,

the collected data is statistically compared. The results signi�cantly shown

that TeamWATCH helps the user to detect and solve con�icts earlier and

better. Moreover, Ye et al. prove that the collaboration is increased [62].

I17. Pietinen et al. [43] conduct a controlled study that is done

in an industrial-like setting for two months. Students participate in

this study. The data is collected during a project called "software

productivity". Eye tracking is used to track two developers visual attention

simultaneously during program development. They are not only interested

in the recorded eye-movements but also on the psychology of programming

of each programmer. The results cast a new light on the importance of

the protocol, the division of roles, avoiding free driving, information search,

and elaboration on �ndings. The results of this study indicate that for

studying pair programming practices, it is essential to continuously review

the experiment to know which task is relevant and which not and to partially

use pair programming. Also the �ndings of this study suggest that pair

programming can be replaced with side-by-side programming that might

have a lot of advantages like better knowledge management, enhancement of

the communication and the best method to study pair programming is the

use of eye-tracking instead of think this avoids the problem of interruptions

during the accomplishment of the tasks. It's better to use it in conjunction

with other protocols to have more level of detail [43].

I18. DeLine et al. [16] convey a laboratory and a �eld study. In the �rst

study, nine software developers take part. The participants seek a precise

task, one group with the help of "team tracks" tool and the other without

any help. Henceforth the task completion is compared, and the users are

questioned about their satisfaction after using "team tracks". In the second

study, the participants work in teams. Five developers work in a group where

36 CHAPTER 4. REVIEW METHOD

they are asked to use "team tracks" to solve a speci�c problem. After that,

they are asked to rate this tool. The goal of the development of "team tracks"

is to address the following issues that are detected by the professionals.

Firstly, the lack of documentation makes the identi�cation of the relevant

part of the code or the relation between two parts of the code confusing.

Secondly, there is a loss of the overview when a lot of documents are open.

Thirdly, the textual search function is de�cient. To address these problems,

"team tracks" is developed. This tool guides the attention of the developer

on the relevant information and helps him to navigate in the code without

loss of path by displaying the source code navigation and other information

to the development team. The �rst user study found that "team tracks" is

easy to learn and to use and facilitate the comprehension of the task. The

results of the second study indicate that "team tracks" reduce the cognitive

and memory load of the developer [16].

4.5.3 Second iteration

I21. Omoronyia et al. [40] conduct an empirical study. The authors suggest

a tool that enhances the shared awareness during programming tasks by

automatically recording developer IDE interactions. This interactions can

be real-time executed actions or tasks. In this paper, the team can also

be distributed geographically. Ten advanced software engineering students

take part in the evaluation of this tool Continuum of Relevance Index (CRI)

model. They are working in a group of three. The collected data through

CRI, audio record and an interview after achieving the tasks help the author

to analyze the e�ciency of this new tool. The results of this study show that

it is possible to create a tool that captures all the interactions of the user in a

team. Another important �nding is the role of social graph view in providing

an accurate summary of the events of the collaborative projects. Last but

not least, the CRI model increases the awareness for example by the function

"slide through" enables the user to scroll on the history of the project thus

they get a complete overview of all the activities that are executed along

with the project. Based on the analyzed data, the author concludes that it

is possible to create a tool that captures all the interactions of the user in a

team to enhance the awareness [40].

I22. Busechian et al. [6] suggest a new generation tool, wireless full

channel EEG device. This tool allows one to perceive in depth the mental

4.5. ANALYSIS OF THE PAPERS 37

processes present in developers during phases of development and how this

process varies when di�erent development approaches are used. The purpose

of this work is to detect the most e�ective conditions, procedures and

practices to enhance the quality of software systems with high e�ciency.

The metrics that are measured are task engagement and mental workload.

Electrodes are placed all over the head of the four participants to obtain a

brain map with di�erent brain areas. Four subject works in pairs to prove

that pair programming procures a higher level of concentration. The goal

of this experiment is �rst to see the applicability of this solution then to

analyze the collected data. Three waves are considered in the interpretation

such as alpha, beta, and theta. Alpha waves permits one to conclude that

while pair programming developers are accomplishing the tasks in a relaxed

mode, beta waves revealed that tasks that required concentration to solve a

problem are present in solo and pair programming but the coloured region

in the brain is nearly the same, but in a pair is less intense. Moreover, last

but not least theta waves showed that solo developers desire to eliminate

distractive stimulus in order to stay concentrated on a task. From this

short experimentation, the do-ability of this new approach is approved, and

the results demonstrate that there is a di�erence in brain activity between

pair and solo programming. Busechian et al. [6] con�rm that EEG can be

adopted to evaluate the e�ectiveness of processes and practices in software

engineering.

I23. Stein et al. [54] aim to address the following hypothesis: seeing the

visual attention of a developer may help other persons to accomplish the same

assignment. A small experiment is done in order to prove or to disapprove

this hypothesis. Professional programmers participate in this study. They

are asked to wear a head-mounted eye tracker and to solve a speci�c task.

Their actions and speeches are also recorded. In the second step of the study,

another group of programmers should see the eye gaze of the �rst group and

should solve the same tasks. The current study found that there are two

manners to detect a bug with the help of eye gaze. It can be done through

identifying where the edit point for the failure is or through delimiting the

part where the cursor persistently alternates. Besides, the results of this

experiment prove the accuracy of the hypothesis of the author. However,

the user should be able to remember on the eye gaze trace in order to use

it later. A signi�cant limitation needs to be considered. Eye gaze may be

38 CHAPTER 4. REVIEW METHOD

confusing if it does not trace a simple path [54].

I24. Chen et al. [8] present a new visual mobile approach to maintain

a continuous awareness for distributed teams. It is devoted to managers

and developers. It consists of using mobile devices when the user is out of

o�ce, but the desktop version is also available for users inside the o�ce.

The user can choose between an online or an o�ine mode. Online mode

assures an up to date awareness information. Push up noti�cations guide

the attention of the programmer on the important up-date or cooperation

moment. Information awareness is spread in "Team Radar" by catching,

spreading, analyzing and visualizing the interaction data of interest. To

evaluate this new tool, the author tries to address this following research

questions: "1. does the visualization on "Team Radar Mobile" increase the

correctness of the answers to the awareness perception questions, compared

to non-visual approaches? 2. does the visualization on Team Radar mobile

reduce the time needed for the awareness perception tasks, compared to

non-visual approaches?" An experiment is done to answer this question. 14

participants take part in this study. They are divided into two groups.

Each group is asked to execute some tasks. One with the help of "Team

Radar" and one without "Team Radar". The evaluation is based on the time

completion and the average correctness of the task. The study investigates

the capabilities of "Team Radar" to detect con�icts, work dependency,

project evolution, expert location, and developer activity. The results of

this study show a signi�cant improvement of the correctness and completion

time for program comprehension activities. In this case, the visual approach

exceeds the non-visual approach. However, for scanning the script, the visual

approach did not improve the correctness but enhanced the time to �nish

the tasks [8].

I25. DeLine et al. [17] report the results of a formative observational

study. Seven developers perform this experiment. The main task is to modify

an unknown code of a popular video game. A major problem with this kind

of system is the de�cient overview of documentation so that the navigation

becomes very di�cult. Computational wear with social �ltering is developed

to address these problems. To collect the data about the process of program

comprehension of the user, custom designed logger was used to record the

code modi�cation. Also, a think-aloud study is done. The main aim of

this investigation is to direct the attention of the developer to the position

4.5. ANALYSIS OF THE PAPERS 39

where most of the programmers have performed through three conceptual

visualizations using wear-based �ltering. The �rst visualization is "FAN

List"; it helps the programmer to �nd a given de�nition without changing

the current focus quickly. The second visualization is "Code Favorites"; it

supports the developer to steer his attention to the important parts where

his team members have worked most of the time. The third visualization

consists of "Wear for degree-of-interest". It is used to support the developer

to have a better overview of the system components and their relationships

among an automatic generated Uni�ed Modeling Language (UML) diagram

based on the interaction history. This diagram displays the whole project

and the level of activity of each previous programmer in each part. This

third visualization helps the developer to maintain the overview [17].

I26. Sillitti et al. [53] present a large case study in an industrial

environment. 17 developers take part in this study for ten months. This

paper investigates how pair programming in�uences the kind of writing and

interacting with the computer of the user. It focuses especially on the

comprehension, the attention and the productivity of the developer. To

collect the data, PROMetrics (PROM) is used to have a complete overview of

the development process of each developer. For the analysis of the collected

data, three techniques (L-graphs, Cycles, and sequences) are used. This

experiment has conclusively shown that pair programming encourages the

programmer to focus on their work so that their productivity is enhanced.

L-graphs have demonstrated that developers were more e�ective and did not

waste time between tools. The �nding of cycles is that programmers focus on

collecting new information, the cycles are shorter and the developer's invest

a lot of time in each cycle. Several limitations to this pilot study need to be

acknowledged. The collected data is limited because it does not take into

account the other activities of the developers except for the activities that

are performed with the computer and only a single case study is investigated

in one development team [53].

I27. Maruyama et al. [32] underlie a new tool that visualizes source code

called "CodeForest". The contribution of this tool is to focus on how the user

will understand the program and not on the user's behaviour or the structure

of the program. This tool combines various software metrics thus enhancing

the user program comprehension. The user seeks source code by observing it

is visual representations. In the �rst step, he should choose one option from

40 CHAPTER 4. REVIEW METHOD

a di�erent combination of 14 software metrics with six visual parameters of

a forest tree to realize a speci�c representation, named "working set". After

that, he interprets this visual representation then memorizes this. These

three steps are done many times until he builds a mental model. The user

can use annotations in order to help him in the memorization. "CodeForest"

memorizes the written annotations and records of the executed actions of the

user that may help him to understand the program. No study proves the

e�ectiveness and e�ciency of this tool [32].

I28. Jermann et al. [25] report a dual eye-tracking study to address

the two following research questions: "1. is selection sharing bene�cial for

collaboration quality? 2. what happens during selections?". 40 pairs of

students take part in this experiment. They are asked to execute two tasks

of pair programming. In the �rst task, the rules of a game implemented

in java should be described. Secondly, errors in the game implementation

should be founded and �xed. During the study, the eye gaze, the speech

,and interface actions of each participant are recorded. Cross-recurrence

is measured to detect the relationship between interaction quality and the

degree of comprehension. Further analysis showed that gaze cross-recurrence

is higher for good interaction quality, during spoken compared to silent

episodes and during moments with selection compared to those without

selection. Taken together, these results suggest that there is an association

between gaze cross-recurrence and high interaction quality also between gaze

cross-recurrence and episodes of referential selection. Another interesting

�nding is that the attention of the developer is attracted during shared and

dual text selections [25].

4.5.4 Third iteration

I31. Chen et al. [27] investigate an approach to increase the awareness of

the programmer to collaborate better and work with each other. An eclipse

plug-in tool "Syde" is used to record all changes transparently done by the

developer and to broadcast them in real time. Another tool "Scamp" is also

employed to treat the data produced by Syde to support the developers to

understand the modi�cation executed in the system. Two multi-developer

projects are developed in this study. "Wordcloud view" and "Bucket view"

are used to enhance the awareness of the team. "Wordcloud view" is

responsible for highlighting the classes of interest in the project and "Bucket

4.5. ANALYSIS OF THE PAPERS 41

view" give an account to the developer who works on which part. The main

advantages of using this tool are increasing the awareness, avoiding con�icts

and duplicating work inside the project. Some signi�cant limitations need

to be considered. First, the small amount of the participants does not allow

the author to have a solid conclusion. Second, the participants work in pairs

which means there is only a simple path of communication. Third, they

work together on the project. Fourth, the developers of this tool are also the

people who assess the study [27].

I32. Meulen et al. [58] underlie a new technique to explore the visual

behaviour of multiple users during a collaborative task around an interactive

area. Four participants take part in this experiment. Each participant wears

eye trackers. The goal is to represent their visual behaviour and to detect

joint attention over di�erent users during the study. This novel method

permit to assess the visual behaviour of multiple participants in order to

understand the collaborative behaviour profoundly on a multi-touch surface.

However, the most severe disadvantage of this method is that it employs

displays that transform the table as a landmark therefore a modi�cation is

needed [58].

I33. Chen et al. [9] present an evaluation of a visualization technique

that enhances programming collaboration through mobile devices. This tool

includes three views. It is dedicated to project managers and developers.

Eye tracking is used to test the usability and e�ectiveness of this new tool.

The eye gaze of the developer is compared with the focus of his eyes on

the screen of the mobile device while executing a speci�c task. This tool

is an enhancement of "team radar mobile". It uses a treemap visualization

technique to have a hierarchical views, and it embodies two views one for

the developer and one for the manager. The programmer view includes

the team-mate names, the detailed performed programming tasks and the

speci�c �les of each team-mate. Real-time chat is also supported. Eleven

participants take part in this study. Their performance (correctness and

completion time) are measured during the achievement of the tasks. The

results of the experiment show that the e�ectivity of this tool to display a

big number of awareness information on the screen of the mobile device is

achieved. However, the users are lost between the three views of the tool.

In the developer view, they cannot understand which part is relevant and

could not compare the information. Therefore, the improvement of this tool

42 CHAPTER 4. REVIEW METHOD

is needed [9].

4.5.5 Fourth iteration

I41. Sharma et al. [50] report the interaction of the participants in a

pair program comprehension task. Eye-tracking is used across di�erent time

scales to record the eye-movements of the developers. It was decided to

distinguish the interaction of episodes into four layers. In this study, the

author investigates the relationship between several layers at various time

ranges. This research seeks to address the following questions: "1. how does

the level of understanding relate the prevalence of di�erent gaze episodes? 2.

how do the types of gaze episodes relate to the types of dialogue episodes? 3.

how do di�erent dialogue episodes relate to di�erent gaze transitions?". The

procedures of this study are as follows: a pair of participants should give an

account of the rules of a game implemented in Java. In this study, two types

of understanding are distinguished: high and low level of knowledge. The

purpose of the current study was to determine gaze and dialogue indicators

at various time ranges in pair program comprehension task and to report

the relationship between gaze and group cognition. The most interesting

�nding was the direct relationship between gaze and dialogue indicators at a

di�erent time. This �nding has important implications for understanding the

knowledge that inhibits program comprehension, besides, the collaboration

that controls pair programming [50].

43

Chapter 5

Results

Chapter 4 describes the procedures and methods used in this review. In

addition, an analysis of the retrieved papers is done. This analysis includes

the author, the year ,the type of study, the general purpose, the research

question, the approaches that are used and �nally the results of each paper.

This chapter will answer the research question of this review by synthesising,

classifying and evaluating the identi�ed data. Table 5.1 illustrates a

summary of the main �ndings of all papers included in the study, with

encompassing information about the paper, type of participant, task type

and method to evaluate the study which has arisen in these selected papers,

are provided in the next table. In the appendix, the complete summarisation

of the literature review papers is available with author, year, environment

in the table B.1. Task type is divided into three types namely program

comprehension, debugging, collaborative programming.

Table 5.1: Summarisation of the literature review papers

Paper Type of Task type Methods to evaluate
participants the study

[44] Professionals Collaborative Eye tracking + verbal protocol
programming

[13] Professionals Collaborative CAISE based CSE tools
programming

[57] Professionals Program Observation (think aloud method)
+ students comprehension

[10] Students Program Video + sound are recorded
comprehension + written notes are analyzed

[64] Professionals Debugging Observation+ interview

44 CHAPTER 5. RESULTS

Paper Type of Task type Methods to evaluate
participants the study

[5] Professionals Collaborative Survey + interview
programming + pre and post observation

[14] Professionals Collaborative Eye tracking
programming + video analysis + interview

[45] Professionals Program Observation (think aloud method)
comprehension + interview

[3] Professionals Debugging Pro�ling tool + Observation
+ students (think aloud method) + interview

+ audio record + video of the
screen + log of various navigations

[42] Professionals Collaborative Eye tracking + screen capture
programming with cursor of the test programs

+ facial videos of users
[29] Professionals Program Survey + observation

comprehension + interview
[62] Professionals Collaborative Video recording + chat logs

+ students programming + survey + CVS repository
[43] Professionals Collaborative Eye Tracking

programming
[16] Professionals Program Interview + observation

comprehension
[40] Students Collaborative IDE interactions

programming
[6] Students Collaborative Brain activity of the user

programming
[54] Professionals Debugging Eye tracking + video recording

+ observation (think aloud
method) + audio record

[8] Students Collaborative Syde
programming

[17] Professionals Program Observation (think aloud method)
comprehension + log of code

information
[53] Professionals Collaborative PROM

programming
[32] N\A Program Notes + recorded actions

comprehension
[27] Professionals Program Average correctness

+ students comprehension + completion time
[58] Students Collaborative Eye tracking

programming

45

Paper Type of Task type Methods to evaluate
participants the study

[9] Students Program Eye tracking + video recording
comprehension + interview

[50] Students Program Eye tracking + observation
comprehension

[25] Students Collaborative Eye tracking + video recording
programming + logs of selection

+ audio record

Table 5.1 is quite revealing in several ways. There are various methods

to evaluate the studies. Strong evidence exists that eye-tracking method

has been used for a long time. They was used in studies from 2004 and

even in 2017 studies. However, a new method that uses the brain activity

of the user is deployed in 2018. The number of papers that are related to

collaborative programming tasks are approximate to program comprehension

tasks, but the number of studies that are related to debugging tasks is lower.

Debugging tasks do not get the same attention among researchers due to the

low number of publications and experiments on these topics. To get a better

overview of the important information in the table, a pie chart is used.

Figure 5.1: Evaluation methods

Figure 5.1 illustrates the employed methods in the studies with their

46 CHAPTER 5. RESULTS

respective percentage. It compares most evaluation methods that are used

in the studies. It is apparent from this pie chart that the most applied

methods are observation and eye tracking to evaluate the attention and the

comprehension of the user. Only 2% of the studies uses brain waves to

evaluate the attention of the user because brain waves measurement is an

innovative technology ; it appears for only a few years.

5.1 RQ1: Approaches to steer the attention of the

user

In this section the results of the �rst research question will be outlined.

Table 5.2 inspired by [62] summarizes the approaches that are used to

orient user's attention in order to support him to have an overview on

the whole project or to understand a part of a document. The rows of

this table embody the tool or model, type of the tool, awareness source,

awareness visualization, awareness �lter. In the appendix, the complete

table C.1 is available with additionally rows such integrated communication

functionality, if it is available, and type of information.

Table 5.2: Types of awareness information inspired by [62]

Tool/ Type Awarness Awarness Awarness
Model source visualization �lter

Team- Standalone Version control 3D visualization Awareness
WATCH repository, local for each developer information
[62] workspace and Standard view for are chosen by

issue tracking all team member the developer
system

Team Standalone Local workspace 2D visualization Awareness
radar for each developer information
mobile and team leader are chosen by
[8, 9] the developer
CRI Eclipse Version control 2D visualization Awareness
model plug-in repository and for each developer information
[40] local workspace are chosen by

the developer
FAST- Standalone Version control 2D standard view N\A
Dash repository, local for all
[5] workspace team member

5.1. RQ1: APPROACHES TO STEER THE ATTENTION OF THE

USER
47

Tool/ Type Awarness Awarness Awarness
Model source visualization �lter

Team Standalone Local workspace 2D standard view N\A
tracks for all
[16] team member
Code- Standalone CodeForest 3D visualization Awareness
Forest automatically for each developer information
[32] records a are chosen by

user's actions the developer
Recording Standard Annotation are Annotations Developer
concerns IDE of written by the are included searches for
using java user in the code speci�cs
annotations language annotation with
[57] search function
Scamp Eclipse Version control 2D visualization N\A
and syde plug-in repository and for each developer
[27] local workspace
Pollinator Eclipse Version control 2D standard view N\A
[64] plug-in repository and for all

local workspace team member
CAISE Eclipse Version control 2D visualization Awareness
based plug-in repository and for each developer information
CSE tool local workspace are chosen by
[13, 32] the developer
Wear Eclipse Version control 2D standard N\A
based plug-in repository and view for all
�ltering local workspace team member
[17]

Collaborative N\A Direct Shared visual N\A
programming communication attention or
[53, 42, 6] shared display
[3, 64, 10]
[14]

Eye Eclipse Eye Tracker 2D standard N\A
tracking plug-in shared eye view for all
[44, 14] gaze team member
[54, 43]

Text Eclipse Selection of 2D standard N\A
selection plug-in a part of view for all
[25] the code team member

As shown in table 5.2, the approaches that are used can be standalone or

plug-in. Besides, the awareness information can be extracted from various

sources such as local workspace, Version control repository and/or recorded

user actions, etc. To support the awareness of the developer, the art of

visualization is also di�erent. The visualization can be in 2D or 3D art. It

can also be customized according to the preferences of the user in some tools.

48 CHAPTER 5. RESULTS

Moreover, in some approaches, the user can select the type of information

in which they are interested. In the next step, these approaches will be

classi�ed in order to get an overview of the similarities and gaps of each

category.

The categorisation is based on the way of presenting the attention data

to facilitate the program comprehension in the team. It can be shared

through the same programming tool with the use of extensions, collaborative

visualization tools or face to face collaboration. In the following subsections,

each category will be explained in detail, highlighting the advantages and

limitations.

5.1.1 Attention sharing by collaborative visualization tools

Card et al. [7] de�ne visualization as "the use of computer supported,

interactive, visual representations of data to amplify cognition", that means

tools that help the users to understand a data through converting and

assigning the data in visual context. As the proverb says, a picture

is worth a thousand words. Visualization tools transform the data into

information graphics. The collaborative visualization tools are a combination

of visualization tools and collaborative tools. They are used to highlight

the structure, and evolution of a program and display it to the team

members [5, 62, 16]. Among the o�ered features, some visualization tools

assist the user in combining software metrics and mapping them on visual

parameters and allows the user to leave notes for recording the present

comprehension [32]. Visualization tools can be divided into three kinds:

desktop visualization tools, mobile visualization tools, and interactive surface

visualization tools.

Desktop collaborative visualization tools

Desktop visualization tools, as the name suggests, conducts the visualization

through a desktop. The principal advantages of desktop visualization tools

are con�ict detection, minimized cognitive load, simple coordination, and

the maximization of team activity awareness. Moreover, the developer can

check who opened a �le, which �le is being viewed and which modi�cation

have been done in this �le, the verbal communication about the project is

increased, a complete overview of the workspace is highlighted. Also, he can

5.1. RQ1: APPROACHES TO STEER THE ATTENTION OF THE

USER
49

extract and visualize only the relevant activity information to avoid mental

overload. In addition, novice programmers can easily understand the shared

information in the workspace [13, 5, 16, 17, 32].

Despite its e�ciency and reliability, desktop collaborative visualization

tools that share source code su�er from several signi�cant drawbacks. For

instance a high cognitive and mental workload are required for example

in the case of CodeForest [32], where the user should memorize visual

representation of the source code until he builds a mental model. Also,

it is predestining for programmers that work in the same room and at the

same time. Therefore only a small number of developers can pro�t from this

tool. Consequently, it is not suited for big projects or remote collaboration

[5].

Mobile collaborative visualization tools

Mobile visualization tool refers to the use of mobile devices such as

smart phone or tablet to visualize the information related to the project.

This method provides additional functions compared to the over kinds

of visualization tools, such that the continuous awareness of the workers

is assured. The developer can see i.e. what the �le of interest is, the

workload, who has modi�ed or checked a �le. This solution furthers the

other visualization tools by supporting multiple views suitable for software

developers as well as for the team leader. These tools are dedicated

for program comprehension tasks, so that the correctness and a better

completion time in the tasks are insured. Besides, mobile collaborative

visualization tools hold ad-hoc collaboration [8].

One of the signi�cant drawbacks of adopting this system is information

visualization. It is challenging because all the relevant knowledge should

be available for the user on the small display of his mobile device. Using

treemap can be a solution to display the hierarchical information on the

small screen. The coordination between sizeable collaboration is a di�cult

task. Also, it is challenging to maintain the balance between maximizing the

performance and minimizing the power consumption of the mobile devices.

The scalability and the readability are in�uenced by the �ooded information

[8, 9].

50 CHAPTER 5. RESULTS

Interactive surface collaborative visualization tools

Sharing an interactive surface is an innovative approach to enhance collab-

oration. It consists of sharing a large-scale display; this can be a multi-

touch tabletop [58] or a normal display [5]. All the team members can

simultaneously use it to execute a speci�c task. This method represents a

valuable alternative to sharing the same computer display in collaboration.

The interactive surface allows a higher number of participants around the

screen compared to the use of a single display. Therefore the joint attention

of the worker is improved [58]. One advantage of the interactive surface is

the accurate overview of the critical information, and the co-location of all

the team members facilitate the e�cient communication that is related to

the project. Another advantage is avoiding disturbing events such as going

to the other room or worse pointing system that delay the work.

However, Van der Meulen et al. [58] identify major drawbacks in this

method. Using a multi-touch tabletop makes the table as landmarks.

Another disadvantage is that the number of participants still limited.

Moreover, the large shared display demonstrates the information of one

person at a time. The majority of the developers regard this way of sharing

information is monotonous and embarrassing[5].

5.1.2 Attention sharing by IDE plug-ins

IDE o�ers a high number of plug-ins that support collaborative programming

and software visualization interface. Plug-ins in IDE can have di�erent

functions such as transforming an unfamiliar code or data interaction of the

user to plots, trees, and graphs in order to help the developer to comprehend

the program. Another essential function is the inclusion of user annotations

or notes in the IDE to build a mental model, besides sharing the eye gaze or

the text selection of the partner.

The aim is assisting the user in focusing their attention on the important

part of the code and therefore in enhancing the collaboration. This approach

is non-intrusive and lightweight. The key advantage of this approach is to

expand the visual focus of the developer through the displayed information

that are related to the modi�ed �les and the people who changed these �les

and exhibit statistics about the important part of the projects [27].

The main weakness of this approach is that the reserved space for

5.1. RQ1: APPROACHES TO STEER THE ATTENTION OF THE

USER
51

displaying the relevant informations is not suitable for exploring the data.

The IDE interface includes a lot of heterogeneous information (classes,

methods, visualization data etc.) thus the developer sometimes loses the

overview. Besides, acquiring knowledge about the use of the IDE is necessary.

Nevertheless, programmers need the manuals to solve some speci�c tasks [64].

As reported in the chapter 4, annotations or visualization features, eye

tracking, text selection and wear based �ltering can be used to enhance

collaborative programming. Therefore, IDE plug-ins that support the user

attention sharing are divided into �ve main features as follow: attention

sharing by eye-tracking, attention sharing by text selection, attention sharing

by annotations, attention sharing by interaction, and attention sharing by

wear-based �ltering.

Attention sharing by eye tracking

Eye tracking is a method to increase the awareness in collaborative pro-

gramming through showing a persons visual focus of attention. It can be

used in remote or real-time collaboration. The shared eye gaze supports the

developer to understand, modify or solve a speci�c task. The eye gaze can

be shared in di�erent ways: by sharing the followed cognitive path of the eye

movement of the developer [54] or by showing the part, where the partner is

looking, and changing the colour when they are looking at the same position.

One possible visualization is gaze plots. Another possible visualization of the

eye gaze is heatmap. Figure 5.2, on the left side, displays an example of gaze

plot. It consists of displaying the location, and the order of the focus of the

user on a speci�c part in the code. Figure 5.3, on the right side, illustrates an

example of heatmap. It reposes on showing how the visual attention focus

is dispersed on the code or document.

D'Angelo et al. [14] identify several advantages of eye tracking. First,

it increases the performance of a team in a visio-spatial domain by merely

seeing and following the eye gaze of one worker such that in debugging. Due

to eye tracking, a novice user can improve his skills by learning the way of

program understanding and developing of experts. The second advantage

of using this method is reducing cognitive workload because pointing to a

speci�c part of the code become faster and more e�cient so that the workers

spend more time looking at the same place. Last but not least, eye tracking

allows �exibility of work location by the possibility to coordinate the work

52 CHAPTER 5. RESULTS

Figure 5.2: Gaze plot example
according to Yusuf et al. (p.
2,[63])

Figure 5.3: Heatmap example
according to Yusuf et al. (p.
7,[63])

in remote collaboration [14].

Eye tracking presents also disadvantages. One of these is that eye gaze

is confusing if it does not follow a simple path [54]. The purpose of eye

tracking can be challenging in some situations. The accuracy of the eye

tracker decreases every time the user changes or moves around. That is why

the calibration should be done in some cases [42]. Furthermore, the eye

of the developer should be visible so that people who wear glasses, should

wear a speci�c quality of glass or lenses due to their potentially disturbing

re�ections of the standard glasses or lenses so that the eye gaze will not be

accurate. Also, eye tracker cannot reach all the collaborations. Sometimes

there are outside the reach [9].

Also, in remote collaboration, additional tools should be used to achieve

a correct synchronization [44]. Additionally the scalability of eye tracking

is limited by the number of events in the display and the number of

participants. A high number of �xations in the small time of interval and

visual focus attention of multiple users makes the understanding of the

program ambiguous.

Attention sharing by text selection

There are various methods to enhance the collaboration inside a team. One

of these methods is sharing text selection to the partner by selecting a part

5.1. RQ1: APPROACHES TO STEER THE ATTENTION OF THE

USER
53

of interest in the code. So that the collaboration becomes faster and more

e�cient, the team will spend more time on e�ective collaboration. Dual

selection can also be made to compare two parts of the code by the team or

to con�rm their partner reference by selecting the same region [25]. It is a

kind of synchronous communication in the team.

One of the main advantages is to keep track of the attention focus

of the partner and to highlight the relevant part of a document. The

communication inside the team becomes very simple and precise through

the selection because it is under less intentional control in comparison with

eye tracking. The main limitation of sharing text selection is that the number

of the developer in the team is not scalable. This approach is recommended

to a small team.

Attention sharing by annotations

Source code annotations are tags used to decorate source code with meta-

data. It supports the developer to understand the code rapidly by obtaining

a mental model that encompasses helpful information about the code.

The main advantage of annotations is that it has a positive e�ect on the

comprehension, modi�cation and the debugging of a program through the

fast searching of the annotations. Also, it supports the developer to con�rm

hypotheses about the code, and to locate the features [37].

Thanks to annotations, the need for scrolling is reduced, and the

orientation inside an unknown project becomes faster. The spot of

annotations is easy and it can be an alternative of to-do comments.

Another signi�cant advantage is that the number of the developer that uses

annotations is scalable and it can allow �exibility in the work. It assures an

asynchronous communication between the team; thus the collaboration can

be remote. Besides, program comprehension, correctness, and maintenance

time are enhanced when annotations are used. The con�dence of the tasks

is not in�uenced when annotations are employed [57].

However, this approach has some limitations. One major drawback of

this approach is that the annotation does not scale. There is an issue with

the granularity; every line of code cannot be linked with their appropriate

concern. A high cognitive and mental workload are needed in order to

understand the concern because of mixing the annotations with the source

code. Another issue with annotations is that it fails to be up to date [57].

54 CHAPTER 5. RESULTS

Attention sharing by interaction data

IDE plug-ins that support attention sharing by interaction data, helps the

user to comprehend the program by transforming this data into graphics

like city metaphor, wordcloud, bucket view, etc.. The visualization of

this data o�ers many advantages for example accelerating the program

comprehension, getting a complete overview of the artefacts [40, 27]. Besides,

the attention of the developer is guided on the relevant activities, which are

highlighted. Who is changing, what is changing and when is changing in

real-time are available to enhance the awareness of the developer [27]. These

conveniences concern not only the developer but also the whole team so that

the team members can be distributed. Plug-ins that share interaction data

are non-intrusive and lightweight and support emerging con�icts. Avoiding

redundancy and guiding the attention of the developer on the relevant parts

are also supported [40, 27]. Task completion time is also improved [13]

The main downside of this tool is that the developer forget sometimes to

connect the tool with the IDE [40]. This approach can be an alternative to

face to face communication, especially for distributed teams [27].

Attention sharing by wear-based �ltering

Wear-based �ltering is a tool that encompasses computation wear and

collaborative �ltering. The term "computation wear" is used by McCandless

et al. [23] to refer to recording user's interaction history and to broadcast

them to the other members of the team. In broad terms, collaborative

�ltering is de�ned as a way of permitting the worker to rate or annotate the

shared information inside the team. The purpose of this is to support the

team-mate to search for easily relevant information [20]. Wear-based �ltering

contains three di�erent visualizations to assure three di�erent essential

functions. The key advantage of wear-based �ltering is supporting the user

to inspect a de�nition without losing the current focus through a FAN list.

Besides, this list can be ordered in the way that the most visited parts in the

code display �rst. Furthermore, this approach highlights hot spots to guide

the attention of the user on the parts of the code that takes the most attention

by the other programmers. Moreover, an overview of the system components

and their relationships is maintained through an automatic generated UML

diagram [17].

5.1. RQ1: APPROACHES TO STEER THE ATTENTION OF THE

USER
55

One of the signi�cant drawbacks to adopting this approach is that failure

during programming e�ects the interaction data so that the accuracy of the

visualization data will decrease. For example when a programmer often �xes

a bug this will provoke interaction data that accentuate this part, and it will

acquire more importance than it needs. Similarly, when the user falsely

clicked on a part of the code, this part will appear as important for the other

team members, but in reality, it does not do [17]. Another limitation is that

the user needs a high mental and cognitive overload to adopt this tool.

5.1.3 Attention sharing by face to face collaboration

The joint attention in direct communication approach is very high. The

direct communication is necessarily done in the same room and at the same

time. Finger point and gesture are used in spoken dialogues to coordinate

spatial attention [44]. The primary advantage is that direct communication

eliminates disturbing activities [53]. The team is focused on the productive

tasks; thus the task engagement will be increased. On the other hand,

the mental workload will be decreased, and the programmer will work in

a relaxed mode. Their level of concentration is higher than in solo work

due to the moral obligation to not waste time in team working . Also,

the developer tends to focus on new and innovative information instead of

spending the time on understanding old information [6]. Task completion

time is also enhanced [13].

One downside regarding this methodology is that some crucial infor-

mation gets lost when one member of the team leaves the work. Another

disadvantage is that the frequent interruption of the developer while

improving their tasks will decrease their productivity. This approach is

not recommended for big projects or teams because the worker will lose

the overview and the communication will be impractical [53]. Besides, the

capacity of the human to memorize all details is limited, and the transfer of

knowledge and expertise is most of the time ambiguous and not evident [60].

Furthermore, in the case of pair programming as outlined in chapter 2, two

di�erent roles can be a�ected by each member, navigator and driver. The

navigator spends a lot of time doing anything when the task is easy, or the

driver has su�cient expertise and knowledge to solve it alone. Some solutions

are outlined in the paper [43] for addressing this disadvantage . First, the

collaboration should be partial. That means the pair should collaborate only

56 CHAPTER 5. RESULTS

on the relevant parts. The navigator should spend his time reviewing the

code. In this way, a continuous review will also be assured. This solution is

only e�cient when the pair does not share the same workspace [43].

5.2 RQ2: Attention measurement during collabo-

rative programming

The outcome of the second research question will be highlighted in this

section. Before that, the word "shared attention" will be de�ned. Shared

attention is the fact of keeping a group of people focused on essential

activities in a di�erent domain. It can be enhanced by an external stimulus

or an internal cognitive method [53].

In this section, attention data and attention measurement approaches in

software engineering will be presented. These measurements are bene�cial

in enhancing methods that use these metrics to guide the attention or to

assess other approaches. Various techniques are handled such as eye tracking,

EEG, measuring the task/time completion and the error rate or observing

the participants through a think-aloud method, audio, and video recording

or analyzing the logs. Each measurement method can evaluate only speci�c

attention data; that is why their classi�cation will be based on the evaluation

method.

5.2.1 Eye tracking

Eye tracking has become very popular in many research domains such as

psychology, driving, reading, software engineering, etc. The �xations and

saccades are the standard measurements to evaluate the visual e�ort of the

user. Fixation refers to counting the number of times that the user is looking

on Area Of Interest (AOI) and saccades mean the rapid movements of the

eyes between the gaze of points [46].

Attention metrics with eye tracking [46, 24, 31] :

The estimation of the cognitive activity in software engineering using eye

tracking is based on numerous metrics such as:

• Fixation: durations, Time To First Fixation (TTFF), total �xation

time

5.2. RQ2: ATTENTION MEASUREMENT DURING

COLLABORATIVE PROGRAMMING
57

• Saccade: velocities, amplitudes

• Scan path: distribution of gaze points

• Visual e�ort: pupil dilatation, blink number

The metrics of eye tracking are divided in this review into four main

categories such as �xation, saccade, scan path, and visual e�ort. In the

�rst category, the duration of the gaze point is measured to estimate the

attention of the user for example high �xation means high concentration.

Time to the �rst �xation means the period until the user detects the AOI

and total �xation time indicates the duration of the focusing of the user on

the AOI [9]. The second category is saccade, amplitude and the velocities

are measured. Amplitude is "the angular distance the eye travels during the

movement" [2]. In the third category, scan path refers to the distribution of

the gaze points in the display.

Last but not least, the fourth category indicates the visual e�ort of

the user over the pupil dilatation and the blinking number. Eye-tracking

should be simple to use, to understand and non-intrusive [42]. The use of

eye tracking as a measure in cooperation tasks is very challenging due to

the obligation to check all the di�erences and the similarities between the

developers and compare them. Fixations times and the number of �xations

are generally used to a single feature of visual attention [42].

5.2.2 Multichannel EEG device

Multichannel EEG wearable device is a newly approach in software engineer-

ing to measure the attention of the user. This method is based on placing

electrodes on the head in a precise position to record the brain waves of

the human. This approach is di�erent from fMRI. Multichannel EEG device

assesses the brain performance during the software development in their daily

work toward fMRI, and the developer should be in a lying position and see

the code in a small mirror [6, 52].

Attention metrics with Multichannel EEG device [6]:

The assessment of the brain activity is typically evaluated through three

di�erent waves i.e. alpha waves, delta waves and theta waves [4].

58 CHAPTER 5. RESULTS

Figure 5.4: Topographic brain maps according to Busechian et al. (p. 3,[6])

Figure 5.4 illustrates a topographic brain maps for the alpha, delta,

theta waves during pair programming. The brain waves are divided into

di�erent categories based on their speed [6]. In this review, only three

types of waves are considered to measure the program comprehension of

the developer. Alpha waves are responsible for the relaxation period [6].

Furthermore, delta waves give an account of the need of concentration to

the execution of a speci�c task. Moreover, theta waves report the existence

of distraction elements and the wish to eliminate it. The di�erence between

brain activities when performing di�erent activities can be obviously proved

via wearable multichannel EEG devices [6].

5.2.3 Observation

Observation is as equally important as the other techniques for measuring the

attention of the developer. It is considered as a data collection method. Au-

dio/ video recording, logs and the reactions of the developers can be observed

and analyzed to assess the attention during the collaborative programming.

There is di�erent metrics to evaluate the program understanding over

observation such as correctness, completion time, joint attention, response

to question about program comprehension, and number of switch between

applications [58, 10, 17]. Joint attention means the focusing of the team

member on the same task or on the same position in the screen. Additionally

number of switches between the applications refers to the alternation of user

between the IDE and the web to resolve problems [58, 10, 17].

5.3. RQ3: CORRELATION BETWEEN COLLABORATION AND

ATTENTION DATA
59

5.3 RQ3: Correlation between collaboration and

attention data

This part of the thesis responds to the third research question about the

correlation between collaboration and attention data. After analyzing the

papers, a positive correlation between cooperation and attention data has

emerged. The measurement of attention data can be measured through

di�erent tools as explained in the previous section.

Pietinen et al. [44] highlight that the e�ciency of the collaboration

can be examined over the number of overlapping �xations. Problems in

comprehension can cause higher joint �xations, long gaze duration, and high

mean �xation. Contrarily, high rate of overlapping �xations can be the e�ect

of a powerful collaboration [44]. Also, Sharma et al. [50] point out that the

degree of comprehension in�uences the duration of the joint visual focus

of the gaze of the developers. They argued that a high duration of joint

attention implicates a high degree of understanding in the team. Besides,

the joint visual focus in�uences the collaboration so that persons with a high

level of understanding devote more time to collaboration. In the opposite

direction, the observation is also right, a low level of understanding refers

to lower time focusing together . The correlation between collaboration and

the attention is also exempli�ed in work undertaken by Busechian et al.

[6]. They prove that working in a team improves the focus on a speci�c

task by eliminating disturbing activities. Moreover, they con�rm that the

brain waves of pair programmers are di�erent from the brain waves of solo

programmers. As mentioned in the previous section, brain waves is a novel

approach to measure attention. Sillitti et al. [53] also con�rm that pair

programming has an impact on the attention of the developer. They approve

that the focus of the developer on their tasks is enhanced, such that the time

to �nish a task is decreased, their productivity is increased and switching

between tools is also decreased [53].

The evidence from these studies con�rms that attention guidance helps

the developers to �nd and navigate relevant code on the project quickly,

therefore the cooperation is optimized. Similarly, cooperation increases the

attention orientation on important tasks.

60 CHAPTER 5. RESULTS

5.4 Threats to validity

The purpose of this literature review is to summarize and to evaluate the

retrieved approach that are related to steering the attention of the developer

during collaborative programming. Nonetheless, there are threats to the

validity of the results and �ndings of this review. These threats are divided

in four categories according to Wohlin et al. [12] i.e. internal, external,

construct and conclusion validity.

Internal validity:

A deviation from the guidelines of Kitchenham [26] is done because the

execution of the research is made by only one person and this search is

done manually. Another threat is inclusion and exclusion criteria. They are

de�ned to avoid subjective decisions, but the choice to include a paper to

the review is still subjective. Moreover, the classi�cation is based on the way

of presenting the attention data to facilitate the program comprehension in

the team. The choice of this classi�cation is subjective. This classi�cation

may a�ect the interpretation of the results.

External validity:

The fullness of the studies depends on the used keywords but there is a

limitation in the number of characters of the search strings that should be

inserted in the databases. Otherwise, there is a limitation in the search

engine and databases as the syntax and standards varies among databases.

This can lead to miss some relevant papers.

Construct validity:

Correctly analyzing all articles is challenging because synonyms and ambigu-

ous terminology are used. Due to these points, other researchers may decide

di�erently. Also another search string that includes di�erent synonyms would

have di�erent results. Five databases are selected, in order to increase the

probability to reach the most relevant papers.

61

Chapter 6

Evaluation and discussion

Reviews perform an important role in synthesizing key research results and

highlighting new research areas for researchers. This review proposes a

classi�cation and a description in chapter 5 of the awareness approaches

that support steering the attention of the developer on the important parts

in the program. In this chapter, a comparison between the approaches will

be made.

This chapter is composed as follows: �rstly, the evaluation feature will

be de�ned. Secondly, approaches will be assessed and compared on the bases

of the prede�ned criteria. And �nally, a discussion will highlight the gaps

and similarities with the help of di�erent visualizations.

6.1 Evaluation features

The aim of collaborative visualization tool, IDE plugins that support

attention sharing and face to face communication, is enhancing the awareness

inside the team and improving the program comprehension. Therefore,

the evaluation features are oriented to the awareness of human activities

and program comprehension. Dourish and Bellotti [18] refer to awareness

as "an understanding of the activities of others, which provides a context

for your own activity". The evaluation criteria are based on the factors

that in�uence the cooperation between the team and that facilitate the

program understanding. As explained in the motivation in chapter 1, it

is clear that the goal of this review is to summarize and assess all of the

approaches that are related to steering the attention of the developer during

62 CHAPTER 6. EVALUATION AND DISCUSSION

collaborative programming in order to get an overview of the process of

software development and to enhance the program understanding. To this

end, the features for the evaluation that are oriented to awareness of human

activities are described in the classi�cation of Gutwin et al. [21] and the

classi�cation of Storey et al. [56]. In this review, a combination of both

classi�cations is done. The choice of the included features is based on the

available information in the retrieved papers. For example, the cost feature,

by Storey et al. [56] classi�cation, cannot be included in the evaluation due

to the lack of the costs in the majority of the retrieved papers.

The features de�ned by Gutwin et al. [21] are as follows: change

detection, intention, activity, location, identity, and sphere of in�uence.

Storey et al. [56] features are namely time, kinds of view, navigation view,

interoperability, scalability, learning. Additionally to the feature of Gutwin

et al. and Storey et al., the features that are related to steering the attention

and enhancing program comprehension are the contribution of this review.

These features are deduced from the gaps that are detected in chapter 4

by the analysis of the retrieved papers such as familiarization with the

project [29, 40], con�ict detection [62], and mental model [45, 57]. The

rest of the features are inferred from the goals of orienting attention such

as distraction elimination [6], mental workload [29], cognitive workload [57],

and productivity (time/task accomplishment) [29].

Since di�erent features are used for the comparisons, a categorization

is meaningful. The features will be classi�ed, based on six key dimensions

such as time, kinds of view, navigation view, e�ectiveness, e�ciency, and

expressiveness. Time refers to the time of occurrence of the awareness

activity. It can be past, past present or/and historical data [56]. Kinds

of view means the types of information awareness illustration. It can be

annotation, graph view, or statistical view [56]. Navigation view indicates

the art of user's navigation through the visualized information. They can

have a detailed or an overview of the whole visualization. The view can be

also coupled or zoomable [56]. The e�ectiveness deals with the adequacy to

accomplish the expected goals, this de�nition is given by Storey et al. [56].

Froehlich and Dourish [18] con�rm that interoperability is important because

awareness system should work in combination with other tools. Scalability is

also essential in order to decide if the approach holds a large software project.

Learning deal with the manner of adopting the approach. Interoperability,

6.2. APPROACHES EVALUATION 63

scalability, and learning will be part of the second dimension, which is

e�ectiveness [56]. E�ciency is de�ned as the e�ect of using a speci�c tool to

support program understanding and to enhance collaborative programming.

The e�ciency is measured over productivity, mental/cognitive workload,

and distraction elimination. Maletic et al. [30] de�ne expressiveness in

program comprehension as the speci�cation about who, how, why, and what

is attempting to understand a speci�c object. Person's interaction with the

workspace is the centre of interest of this dimension. According to this

de�nition, the following features will belong to expressiveness.

• Change detection [21]: the user can detect the modi�cations that

are made in the code.

• Con�ict detection [62]: the tool can help the user to detect con�ict

when two users or more, work on the same �le.

• Mental model [45, 57]: the user can quickly build a mental model

to have an overview.

• Familiarization with the project [29, 40]: the tool assists the

newcomer user to have an overview of the unfamiliar code.

• Intention [21]: the user can know the goals of their team mate

• Activity [21]: includes information about the achieved activities of

each member of the team.

• Identity [21]: incorporates information about the person who modi-

�ed a speci�c �le.

• Location [21]: consists of knowing the position where the partners

are working.

• Sphere of in�uence [21]: refers to the positions where changes

should be made.

6.2 Approaches evaluation

In the section 6.1, evaluation features are de�ned with the intention of

evaluating the outlined approaches such as collaborative visualization tools,

64 CHAPTER 6. EVALUATION AND DISCUSSION

IDE plug-ins and face to face collaboration from chapter 5 in this section.

Each group will be evaluated in the table 6.1. The key dimensions of

the evaluation are presented in the rows of table and divided in six parts.

This are: time, kinds of view, navigation view, e�ectiveness, e�ciency and

expressiveness. Each part of the rows is divided into sub-parts. The column

of the table encompasses the subcategories of each approach.

This approaches are made to support di�erent kinds of tasks such

as program comprehension, collaborative programming and steering the

attention of the developer in relevant parts of a code or document. The

comparison of these approaches is based on the type of visualization (kinds

of view and navigation view), type of displayed information (present, recent

past or historical information), the e�ciency, the e�ectiveness and the

expressiveness of the approaches to achieve the goals. The di�erences

between collaborative visualization tool, IDE plug-ins and face to face

collaboration are highlighted in table 6.1. It illustrates only the three classes

of the approaches due to the lack of place in the page of the report. For

more detail the complete table is available in the appendix A.1, where the

sub-categories of each approach are compared. Three colours are used in

the table as follows: red for 0% to 33% , yellow for 34% to 66% and green

for 67% to 100%. The percentage means the availability of the feature in

this approach. For example: only two approaches out of �ve approaches

uses the present time in the IDE plug-ins. 2
5=40% so the corresponding case

of the table must be in the colour yellow. The assessment is based on the

features that are included in each approach. For example the tools of desktop

visualization are various and not all the tools o�er the same features. So in

this case, a feature is considered available, if it is present in one of the selected

tools in this approach (best case is taken). In table 6.1, the collaborative

visualization tools will be evaluated.

It is apparent from table 6.1 that most collaborative visualization tools

support various time information, di�erent kinds of view and navigation

view. Graph view and statistical view are derived data. This data helps the

developer to be aware immediately of all changes, the process of the work and

particularities that should be known. This type of view allows the developer

to answer the who, what and how questions. Navigation view aid to reduce

the cognitive and mental workload. A complete overview of the project

is assured over the zoomable view. Under these factors, the e�ciency is

6.2. APPROACHES EVALUATION 65

Table 6.1: Evaluation of collaborative visualization tools

Collaborative IDE Face to face
Evaluation features visualization plug-ins collaboration

tool

Present
Time [56] Recent past

Historical
Kind of Annotation
view Graph view
[56] Statistical view
Navigation Overview/detailed
view Coupled view
[56] Zoom-able view
E�ecti- Scalability
veness Interoperability
[56] Learning

Productivity
Mental
workload

E�ciency Cognitive
[29, 57, 6] workload

Distraction
elimination
Change
detection
Con�ict
detection
Mental
model

Familiarisation
Expressi- with the
veness project
[21, 29, 40] Intention
[45, 57, 62] activity

Identity
Location
Sphere of
in�uence

enhanced as well as that some features of the expressiveness are also assured

for example, activity, identity, location, identity, the sphere of in�uence,

change detection and familiarization with the project. Mental model and

con�ict detection are not supported because collaborative visualization tools

are based on the interaction of data and changes in the local workspace of

66 CHAPTER 6. EVALUATION AND DISCUSSION

each developer and not on the source code.

Furthermore from table 6.1, it is evident that IDE plug-ins which support

awareness combine recent past and historical information except eye tracking

and text selection that use real-time information. The coupled view is

assured in this approach. Its main advantages are comparing two or more

views in real time and avoiding switching between tools, but one of the main

limits is the high cognitive workload that is needed to solve a task. These

tools are not scalable, and learning is not always natural. The developer

should acquire knowledge in order to pro�t from this approach. Change

and con�ict detection are seldom assured; three of nine features of the

expressiveness are not covered. The causes of these results are that these

tools do not use derived data in most cases. That is why a high cognitive

and mental workload are needed because the user alone should build a mental

model and interpret the displayed data.

Moreover, table 6.1 sets out that in face to face collaboration, real-time

and recent past information are used to enhance collaborative programming

on account of the direct communication between the collaborators. There

is no view in this approach because it is consists of programming and

communicating in the same room together. It is e�cient and expressive

but not scalable as explained in the chapter 5.

6.3 Gaps and similarities

In order to have a better overview on the similarities and gaps between the

approaches, visualizations are used. The de�nitions of the features criterion

are pointed out in the section 6.1.

6.3.1 Modi�ed Venn diagram

A modi�ed Venn diagram 6.1 is adapted to highlight the logical relation

between the reviewed papers and the used approaches to steer the attention

of the developer during collaborative programming. Each circle symbolizes

each approach.The overlapping between the circles means that the authors

include more than one approach in their paper according to the available

classi�cation in chapter 5. This can be seen in the case of D'Angelo et al.

[14], which uses eye-tracking to enhance the communication between the

pair. So in this case, the paper [14] should be included in the overlap of

6.3. GAPS AND SIMILARITIES 67

eye-tracking and face to face collaboration, similarly for the other papers.

Di�erent colours are used to facilitate the visualization of each set. The

reviewed papers are linked to simplify the access to the papers.

[27]

[13]
[29]
[10]

[6]
[53]

[64]

[44][14]

[42]

[40]
[3]
[16] [45]

[32]
[8]

[5]

[43]

[62]

[57]

[50]

[54]

[9]

[58]

[17]

[25]

Interaction Data

Desktop visualization tool

Annotation

Face to face collaboration

Eye tracking

Mobile visualization tool

Interactive surface tool

Weared based �ltering

Text selection

Figure 6.1: A visual summary of all the papers used in the literature review

What is interesting in the �gure 6.1, is that the most of the papers

are situated in the overlapping between interaction data and desktop

visualization tool approaches and the overlapping between interaction data

and face to face collaboration. This �nding can be explained by the

importance of interaction data to visualize important information. As

explained in chapter 2, software visualization permits to display the code

and the relation between the code. In desktop visualization tools, interaction

data and source code are used for example to conclude statistics and display

68 CHAPTER 6. EVALUATION AND DISCUSSION

graphs that help the programmer to orient their attention on crucial parts

in the code. Additionally, the overlap between annotation, interaction data,

and desktop visualization tools can be explained through the importance

of combining annotation with other approaches to address the drawbacks

of the annotations mentioned in the chapter 5. As known, annotations

can sometimes be outdated and not su�cient to steer the attention on

the relevant information. To solve this problem, interaction data and

software visualization are applied to assure more e�ciency, e�ectiveness, and

expressiveness in real time. Also, the overlap between mobile visualization

tool and desktop visualization tool can be justi�ed over the prerequisite of

having a continuous awareness when the developers or the team leader are

out of o�ce. The same version of desktop visualization tool is available in

mobile visualization tool to increase awareness, similarly, with the overlap

between the interactive surface visualization tool and desktop visualization

tool. Interactive surface visualization tools are a complementary version of

desktop visualization tool.

Furthermore, the overlap between wear-based �ltering and interaction

data can be demonstrated through the indicated de�nition of wear-based

�ltering in chapter 5 as follows recording user's interaction history and

broadcast them to the other members of the team like in the paper of Jbara

et al. [23]. From this de�nition, the strong correlation between wear-based

�ltering and interaction data can be explained. Last but not least, the

papers that report eye-tracking and, similarly, text selection studies to steer

the attention of the developer include not only eye tracking or text selection

but also face to face collaboration. It can be demonstrated that eye tracking

or text selection are not su�cient to explain and to maintain an overview

of the software development process. Another approach should be combined

in order to achieve the knowledge transfer, complete overview of the whole

project and detailed view on the project process.

6.3.2 Radar chart

The goal of the visualization in this section is to display and compare all

the nine approaches based on the de�ned features in the �rst section in one

�gure. Due to the multidimensionality of these data, it is very challenging

to display it. Therefore, the choice of a radar chart. It is a less complicated

visualization method in comparisons to the other visualization methods such

6.3. GAPS AND SIMILARITIES 69

as parallel coordinates, and Cherno� faces. Radar chart is used to summarize

all the approaches in the same chart. This chart is used to compare multiple

quantitative variables. One advantage of these visualization is to identify

similar values or outliers amongst each variable. Besides, it is used to display

the performance of each variable. The variables are represented in each

axis of the chart. In this case, six variables are available. This illustrates

the feature evaluation of: time, kind of view, navigation view, e�ciency,

e�ectiveness, expressiveness. The de�nitions of these features are indicate

in the �rst section of chapter 6. Each feature value is plotted along its

individual axis. All the variables in a dataset are connected together to form

a polygon. Each polygon represents one approach. In the chart 6.2, nine

polygons are displayed. The radar chart encompasses three levels that are

represented through the degrees 1, 2 and 3. The same principle as with the

colours in the previous section. The percentage means the availability of the

feature in this category. Three stages are used in the spider chart as follows

"1" for 0% to 33% , "2" for 34% to 66% and "3" for 67% to 100%.

From the spider chart 6.2, the approaches can be compared. As can be

identi�ed from the �gure 6.2, desktop visualization tool includes the most

features with degree three. In contrast to annotation, it includes the lowest

number of features with degree one. Besides, desktop visualization tool and

mobile visualization tool have a lot of common segments, which means a lot of

features in common such as e�ciency, expressiveness, time and e�ectiveness.

Besides, the polygons of eye tracking and face to face collaboration have

�ve features in common such e�ectiveness, navigation view, kind of view,

expressiveness, and e�ciency. It is apparent from this chart that kind of

navigation and kind of view are of little interest.

This chart is quite revealing in several ways. Firstly, unlike the other

modi�ed Venn diagram, the approaches can be directly compared according

to their features. There was a signi�cant resemblance between text selection

and eye-tracking; both approaches have the same features with the same

degree except for the feature time. By eye-tracking, the time can be present,

recent past and historical, but by text selection, the time can be only present.

In the same way, a desktop visualization tool and mobile visualization tool

are identical for in most of their features except for kinds of view. This

observation can be related through the small screen of mobile devices; it can

not support many kinds of view.

70 CHAPTER 6. EVALUATION AND DISCUSSION

Time

Kind of view

Navigation view

Effectiveness

Expressiveness

Effeciency

Desktop Visualization Tool Mobile Visualization Tool Annotation

Eye Tracking

Weared Based Filtering Interaction Data Face to Face Collaboration

0

1

2

3

Text Selection Interactive Surface Visualization Tool

Figure 6.2: Spider chart for the assessment of the approaches

Interestingly, interaction data and wear-based �ltering have the same

number of features with the same degree except for kinds of view. This

observation can be elucidated by choice of the researchers to include more

features such as graph view in interaction data approach and not in wear-

based �ltering approach. Furthermore, it is apparent from the name that

face to face collaboration does not support kinds of view and navigation view.

For more details about the features that are included in each approach, table

A.1 in the appendix illustrates the similarities and the di�erences.

6.3. GAPS AND SIMILARITIES 71

6.3.3 Stacked bar chart

The comparisons between the approaches will be achieved with the support

of a stacked bar chart. These comparisons will be performed between

the subcategories of each evaluation criteria (e�ectiveness, e�ciency and

expressiveness). The choice of this visualization is based on its characteristics

to show the parts of multiple components. Besides the simplicity of

understanding it; the reader can better compare the approaches with each

other. Three stacked bar charts are needed to assess the approaches

according to the e�ectiveness, e�ciency and expressiveness that are de�ned

in the �rst section. The data is extracted from the table in the appendix

A.1. The percentages in the following graphics are calculated through the

sum of the available evaluation feature in all the categories divided by nine

categories then multiplied by 100.

• E�ectiveness

According to Storey et al. [56], e�ectiveness can be de�ned as the

achieved goals with the help of a speci�c approach. As pointed out in the �rst

section, three objectives are speci�ed, such as scalability [56], interoperability

[56], and learning [56]. Scalability refers to the ability to scale the project

using this tool. Interoperability is a property that permits unlimited sharing

of resources between various end-devices. And, learning refers to the rapidity

of adopting a speci�c tool without di�culties. The stacked bar chart in �gure

6.3 shows the components that assure the e�ectiveness in each approach.

From chart 6.3, it can be seen that desktop- and mobile visualization

tools are the most e�ective. They assure the scalability, interoperability

and easy learning. But annotation is the less e�ective because it is not

scalable, not interoperable and di�cult to learn. 66% of the approaches are

easy to learn and interoperable. This observation can explain the overlap

between annotations, interaction data and desktop visualization tool in the

modi�ed Venn diagram 6.1. To bene�t from the advantages of annotations

and to avoid its drawbacks, annotations is combined with other approaches.

• E�ciency

E�ciency can be de�ned as follows: the e�ect of using a speci�c

tool to support program understanding and to enhance the collaborative

72 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.3: E�ectiveness of the approaches

programming. The e�ciency is measured over productivity [29], mental

workload [29], cognitive workload [57] and distraction elimination [6].

The stacked bar chart 6.4 shows that 100% of the approaches

help the user to eliminate distracting elements. These results assures

and con�rms that the �rst goal of this tool to orient the attention

of the developer is achieved and the developers are concentrated on

their work. 88% of the approaches make developers more productive

in terms of completion time and error. 66% of the approaches does

not need high mental and cognitive e�ort. Desktop visualisation tool,

mobile visualisation tool, interactive surface visualisation tool, eye

tracking, text selection and face to face collaboration provide the same

advantages in terms of e�ciency. The less e�cient approach is annotation.

• Expressiveness

Maletic et al. [30] refer to expressiveness in program comprehension as

the speci�cation about who, how, why, and what is attempting to understand

6.3. GAPS AND SIMILARITIES 73

Figure 6.4: E�ciency of the approaches

a speci�c object. The interaction of the developer with the workspace is the

major of interest of this dimension. The expressiveness of the approaches

that share the attention of the developer is measured over nine features

consisting of change detection [21], con�ict detection [62], mental model

[45, 57], familiarization with the project [29, 40], intention [21], activity [21],

identity [21], location [21] and sphere of in�uence [21].

The stacked bar chart 6.5 displays that 88% of the approaches help the

user to be familiar with the project. 77% of the approaches support the user

to locate in which position in the code their team-mate are working and also

77% of the approaches give an account of the position where changes should

be made. Only 22% of the approaches help the developer to detect the

con�ict and to know the intention of the others in the group. Interestingly,

desktop visualization tool and face to face collaboration, eye tracking and

text selection provide the same advantages related to the expressiveness.

74 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.5: Expressiveness of the approaches

6.4 Discussion

This section aims to highlight the gaps in the retrieved works. The �rst gap

in the retrieved citations is the graphical representation versus the textual

representation in guiding the attention of the developer. The graphical

representation is employed to facilitate the program understanding of the

developer, but in some cases, this visualization complicates his work for

many reasons such as: graphical representation is based on the interaction

data or the source code. This data can be in�uenced by failure done by the

developer like spending a lot of time trying to understand a part of a code.

The interaction data will be respectively in�uenced, and this part will be

represented as an essential part but in reality, it is only a comprehension

problem, and it has no importance. Besides, some visualizations are not

simple to understand such as Codeforest. The developer must memorize

speci�c sets various times until he builds a mental model such in the paper

6.4. DISCUSSION 75

of Maruyama et al. [32]. The textual representation is outdated most of

the time and is not scalable as with annotations. For these reasons, a

mix of textual and graphical representations should be done. The modi�ed

Venn diagram 6.1 illustrates few cases of overlapping between textual and

graphical approaches. The researchers are more concentrated on improving

speci�c methods like eye-tracking, desktop visualization tool and not trying

to combine the approaches except for the case of wear-based �ltering.

The second gap is the considerable di�erence between research and

practice. The majority of the studies are done in a controlled environment.

They do not consider the needs of the developer, for example, the intention

of the team and con�ict detection. These tools orient the attention of the

developer in real time. They do not consider that he can concentrate on

more important parts and this will deviate his attention on the wrong way.

Giving the developer a choice, to �lter when he is ready to know relevant

knowledge about the project or not, it can be a key to solve this limitation.

Recording the data that steers his attention may be another solution for

some cases like by eye-tracking, and text selection. The programmer alone

should choose when and where he would like to use these approaches.

In some cases, these tools complicate the work of the developer instead

of facilitating it in obvious tasks or when the approach is more complicated

to understand then the program itself. The expertise and knowledge of the

developer should be taken into account when such methods are developed.

For example by interactive surface tools, the majority of the developers

that take part in the study consider that the large screen is tedious and

cumbersome to use, is given by Biehl et al. [5]. In the case of the eye-tracking

approach, gaze plots and heatmap impede the workload of the developer due

to displaying it in the background of the code. Besides, the used colours of

these approaches may not be suitable for all the team for example, it would

be unsuitable for people who have red/green weakness as pointed out by

Ahrens et al. [1]. The success of the attention guidance depend on the type

of task and programmers knowledge and expertise. Researchers should treat

these dependencies with a lot of detail to provide approaches dedicated to

each team.

76 CHAPTER 6. EVALUATION AND DISCUSSION

77

Chapter 7

Summary and outlook

This �nal chapter draws upon the entire thesis, gives a brief summary and

includes a discussion of the �ndings implication to future research into this

area.

7.1 Summary

The aim of this thesis entitled "literature review and concept for cooperation

in software development" is to perform a literature review based on

the guidelines of a systematic literature review with snowballing research

procedure. The results from this literature review provide the researchers a

better understanding of the outlook of steering the attention of the developer

on the important part in the code or the document during collaborative

programming. The fetched approaches are categorized based on the way

of sharing attention. The pursued categories are collaborative visualization

tool, IDE plug-ins, and face to face collaboration.

Also, di�erent techniques like eye tracking, multichannel EEG devices

that are used to measure the attention of the developer during program

comprehension, are summarized, and additionally the interplay between

collaboration and the attention of the developer is explained.

Moreover, the retrieved categories are described and then compared

according to the following criterion: time, expressiveness, e�ectiveness, kind

of view, navigation view, and e�ciency. For the comparisons, di�erent

visualizations such a modi�ed Venn diagram, spider chart, and stacked bar

charts are used to better demonstrate the gaps and the similarities between

78 CHAPTER 7. SUMMARY AND OUTLOOK

the approaches.

Furthermore, discussion and interpretation are held. One of the main

�ndings is that interaction data is essential to increase awareness in the team.

Most of the time eye-tracking studies are combined with other approaches.

This combination can be explained through the necessity of other tools to

support the programmer to have an overview of the whole project, and the

eye-movements of his team-mate is not su�cient to increase his awareness

and to transfer his knowledge. Challenges and gaps are identi�ed in the

area that opens opportunities for future research. Additionally, this review

can support practitioners and researchers in the identi�cation of important

challenges and the de�nition of lightening approaches that have already been

tested in controlled or industrial settings spanning these 15 years.

7.2 Outlook

The aim of this review is to summarize and to assess the approaches

that guide the attention of the developer, and then to �nd the gaps and

similarities. In this section, recommendations for future studies on the

attention guidance are outlined.

Future research should consider the potential e�ects of real-time attention

transfer on the programmer's performance more carefully. For example, real-

time information are not always suitable for the daily work and it can steer

the attention of the developer in a negative way so that he can miss another

critical task that would be made before switching to another task. One

possible solution is to record this information in order to see it when he needs

it and if possible several times to solve a bug or to enhance his comprehension.

It is also recommended to more closely consider the intention of the team

and con�ict detection because they are essential to speed up the collaborative

work.

In addition, a combination of the approaches should be done for example

eye tracking and text selection. For example, the eye movement helps the

developer to follow the path of the eye movement of his team-mate, but

text selection would be helpful when a speci�c part in the code should

be highlighted because, as known, eye tracking is sometimes ambiguous.

Collaboration can arise outside the reach of eye tracker so that there is not

shared attention shared to it [44]. So through the combination of multiple

7.2. OUTLOOK 79

tools, the drawbacks will be addressed.

Moreover, historical data are important to make statistics about the most

parts that acquire the most attention. But the parts that have not gained

much attention are forgotten, and this can cause problems. The tools should

also advertise the team that a signi�cant part of the code can be missed by

mistake. Another limitation of the use of historical data is that the failure

of the developers in�uences the interaction data [17] so that the attention

of the developer will be steered in a false direction. Further studies should

investigate in more detail how to �lter the interaction data that will be

transferred to drive the attention of the developer.

Standalone visualization tools should be automatically connected with

the development environment because of the forgetting to connect it when

starting developing, and this can in�uence the attention information [27].

Many programmers do not use tools that steer their attention to enhance

collaboration and their performance because they do not know these tools.

They are accustomed to develop without any support, or they think that

it is di�cult and not helpful enough [45]. The research should be more

concentrate on the dependency of the success of the approach on type of

the task, developer knowledge, developer expertise, and size of the team.

Therefore, there is no one-size-�ts-all strategy [29].

Consequently, future research should be conducted in more realistic

settings to shed light on this gap between practice and research. Customized

tools that are adapted to the real needs of the developer should exist. Also,

the attention measurement should be more objective in deciding about the

e�ectiveness of an approach. For these reasons, researchers should focus on

the use of accurate measurement tools like EEG device multichannel, eye

tracking, and fMRI rather than observation. The goodness of the attention

measurement in�uences the virtue of the approaches that guide the attention.

These measurement tools are employed not only to assess the e�ciency of

the tools but also to transfer the knowledge. Ahrens and al. [1] exemplify

this in their work which is based on transforming the gaze data and the

number of �xation into heatmap and class name colouring. This �xation

number gives an account of the importance of the related part of the code

[1]. The main problem of this study is that the code readability, the search

for the relevant part in the code, and the cognitive load are impaired from the

use of heatmap. Plug-ins can be integrated into the existing programming

80 CHAPTER 7. SUMMARY AND OUTLOOK

language, which provides a di�erent view, to address this problem. For

example, a view can provide the developer awareness information like the

list of the named classes with their ranking of importance. This view can

be a better alternative to colouring the name of classes. In this way, the

developer can be self-perpetuate and his attention will not be distracted.

Complementary, another view should be used to visualize the important

parts in the code through 3D representations, where the developer can zoom

or scroll in it, to see more detail when he wants. In addition, the heatmap can

be used in another view, when he needs to know the speci�c parts of interest.

This view will address the program of the positioning of the heatmap in the

background of the code.

81

Bibliography

[1] M. Ahrens, K. Schneider, and M. Busch. Attention in software

maintenance: An eye tracking study. In Proceeding of The 6th

International Workshop on Eye Movements in Programming (EMIP),

Montreal, Quebec, Canada, May 2019. IEEE / ACM.

[2] A. Bahill, M. R. Clark, and L. Stark. The main sequence, a tool for

studying human eye movements. Mathematical Biosciences, 24(3):191

� 204, 1975.

[3] S. Baltes, O. Moseler, F. Beck, and S. Diehl. Navigate,

understand, communicate: How developers locate performance bugs.

In International Symposium on Empirical Software Engineering and

Measurement (ESEM), pages 1�10. ACM/IEEE, Oct 2015.

[4] C. Berka, D. J. Levendowski, M. N. Lumicao, A. Yau, G. Davis,

V. T. Zivkovic, R. E. Olmstead, P. D. Tremoulet, and P. L. Craven.

Eeg correlates of task engagement and mental workload in vigilance,

learning, and memory tasks. Aviation, space, and environmental

medicine, 78(5):B231�B244, 2007.

[5] J. T. Biehl, M. Czerwinski, M. Czerwinski, G. Smith, and G. G.

Robertson. Fastdash: A visual dashboard for fostering awareness in

software teams. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI '07, pages 1313�1322, New York,

NY, USA, 2007. ACM.

[6] S. Busechian, V. Ivanov, A. Rogers, I. Sirazitdinov, G. Succi,

A. Tormasov, and J. Yi. Understanding the impact of pair

programming on the minds of developers. In Proceedings of the

40th International Conference on Software Engineering New Ideas and

82 BIBLIOGRAPHY

Emerging Results - ICSE-NIER '18, pages 85�88, 2018. Exported from

https://app.dimensions.ai on 2019/02/24.

[7] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in

Information Visualization: Using Vision to Think. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1999.

[8] C. Chen, W. Tao, and K. Zhang. Continuous awareness: A visual mobile

approach. Journal of Visual Languages & Computing, 24(5):390 � 401,

2013.

[9] M.-Y. Chen, C. Chen, S.-Q. Liu, and K. Zhang. Visualized

awareness support for collaborative software development on mobile

devices. International Journal of Software Engineering and Knowledge

Engineering, 25(02):253�275, 2015.

[10] B. Chu and K. Wong. Towards evidence-supported, question-directed

collaborative program comprehension. In Proceedings of the 2006

Conference of the Center for Advanced Studies on Collaborative

Research, CASCON '06, Riverton, NJ, USA, 2006. IBM Corp.

[11] I. D. Coman, P. N. Robillard, A. Sillitti, and G. Succi. Cooperation,

collaboration and pair-programming: Field studies on backup behavior.

Journal of Systems and Software, 91:124 � 134, 2014.

[12] R. Conradi and A. Wang. Empirical methods and studies in software

engineering, experiences from esernet. Lecture Notes in Computer

Science, 2765, 01 2003.

[13] C. Cook, W. Irwin, and N. Churcher. A user evaluation of synchronous

collaborative software engineering tools. In 12th Asia-Paci�c Software

Engineering Conference (APSEC'05), pages 6 pp.�, Dec 2005.

[14] S. D'Angelo and A. Begel. Improving communication between pair

programmers using shared gaze awareness. In Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems, CHI '17,

pages 6245�6290, New York, NY, USA, 2017. ACM.

[15] L. Deimel and J. Naveda. Reading computer programs: Instructor's

guide and exercises educational materials cmu. Technical report, SEI-

90-EM, 1990.

BIBLIOGRAPHY 83

[16] R. DeLine, M. Czerwinski, and G. Robertson. Easing program

comprehension by sharing navigation data. In 2005 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC'05), pages

241�248, Sep. 2005.

[17] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson. Towards

understanding programs through wear-based �ltering. In Proceedings

of the 2005 ACM Symposium on Software Visualization, SoftVis '05,

pages 183�192, New York, NY, USA, 2005. ACM.

[18] P. Dourish and V. Bellotti. Awareness and coordination in shared

workspaces. In Proceedings of the 1992 ACM Conference on Computer-

supported Cooperative Work, CSCW '92, pages 107�114, New York, NY,

USA, 1992. ACM.

[19] T. Dyba, B. A. Kitchenham, and M. Jorgensen. Evidence-based software

engineering for practitioners. IEEE Software, 22(1):58�65, Jan 2005.

[20] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative

�ltering to weave an information tapestry. Commun. ACM, 35(12):61�

70, Dec. 1992.

[21] C. Gutwin and S. Greenberg. Workspace awareness for groupware. In

Conference Companion on Human Factors in Computing Systems, CHI

'96, pages 208�209, New York, NY, USA, 1996. ACM.

[22] J. E. Hannay, T. Dybå, E. Arisholm, and D. I. Sjøberg. The

e�ectiveness of pair programming: A meta-analysis. Information and

Software Technology, 51(7):1110 � 1122, 2009. Special Section: Software

Engineering for Secure Systems.

[23] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless. Edit wear

and read wear. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI '92, pages 3�9, New York, NY,

USA, 1992. ACM.

[24] A. Jbara and D. G. Feitelson. How programmers read regular code:

A controlled experiment using eye tracking. In 2015 IEEE 23rd

International Conference on Program Comprehension, pages 244�254,

May 2015.

84 BIBLIOGRAPHY

[25] P. Jermann and M.-A. Nüssli. E�ects of sharing text selections on gaze

cross-recurrence and interaction quality in a pair programming task.

In Proceedings of the ACM 2012 Conference on Computer Supported

Cooperative Work, CSCW '12, pages 1125�1134, New York, NY, USA,

2012. ACM.

[26] B. Kitchenham and S. Charters. Guidelines for performing systematic

literature reviews in software engineering. Technical Report EBSE 2007-

001, Keele University and Durham University Joint Report, 2007.

[27] M. Lanza, L. Hattori, and A. Guzzi. Supporting collaboration awareness

with real-time visualization of development activity. In 2010 14th

European Conference on Software Maintenance and Reengineering,

pages 202�211, March 2010.

[28] S. Letovsky. Cognitive processes in program comprehension. In Papers

Presented at the First Workshop on Empirical Studies of Programmers

on Empirical Studies of Programmers, pages 58�79, Norwood, NJ, USA,

1986. Ablex Publishing Corp.

[29] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On the

comprehension of program comprehension. ACM Trans. Softw. Eng.

Methodol., 23(4):31:1�31:37, Sept. 2014.

[30] J. I. Maletic and H. Kagdi. Expressiveness and e�ectiveness of program

comprehension: Thoughts on future research directions. In 2008

Frontiers of Software Maintenance, pages 31�37. IEEE, 2008.

[31] S. P. Marshall. Method and apparatus for eye tracking and monitoring

pupil dilation to evaluate cognitive activity, 1999.

[32] K. Maruyama, T. Omori, and S. Hayashi. A visualization tool recording

historical data of program comprehension tasks. In Proceedings of the

22Nd International Conference on Program Comprehension, ICPC 2014,

pages 207�211, New York, NY, USA, 2014. ACM.

[33] A.-L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen, and

H. Väätäjä. Software visualization today: Systematic literature review.

In Proceedings of the 20th International Academic Mindtrek Conference,

BIBLIOGRAPHY 85

AcademicMindtrek '16, pages 262�271, New York, NY, USA, 2016.

ACM.

[34] H. A. Müller, K. Wong, and S. R. Tilley. Understanding software

systems using reverse engineering technology. In Object-Oriented

Technology for Database and Software Systems, pages 240�252. World

Scienti�c, 1995.

[35] C. Myers. Software systems as complex networks: Structure, function,

and evolvability of software collaboration graphs. Physical review. E,

Statistical, nonlinear, and soft matter physics, 68:046116, 11 2003.

[36] J. T. Nosek. The case for collaborative programming. Commun. ACM,

41(3):105�108, Mar. 1998.

[37] M. Nosál', M. Sulír, and J. Juhár. Source code annotations as formal

languages. In 2015 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 953�964, Sep. 2015.

[38] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng. A survey on the

usage of eye-tracking in computer programming. ACM Comput. Surv.,

51(1):5:1�5:58, Jan. 2018.

[39] M. P. O'Brien. Software comprehension - a review & research

direction. TechnicaReport UL-CSIS-03-3, University of Limerick Ireland

department of Computer Science & Information Systems, Nov. 2003.

[40] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood. Using

developer activity data to enhance awareness during collaborative

software development. Computer Supported Cooperative Work (CSCW),

18(5):509, Oct 2009.

[41] R. Patnayakuni, A. Rai, and A. Tiwana. Systems development process

improvement: A knowledge integration perspective. IEEE Transactions

on Engineering Management, 54(2):286�300, May 2007.

[42] S. Pietinen, R. Bednarik, T. Glotova, V. Tenhunen, and M. Tukiainen. A

method to study visual attention aspects of collaboration: Eye-tracking

pair programmers simultaneously. In Proceedings of the 2008 Symposium

on Eye Tracking Research & Applications, ETRA '08, pages 39�42,

New York, NY, USA, 2008. ACM.

86 BIBLIOGRAPHY

[43] S. Pietinen, R. Bednarik, and M. Tukiainen. An exploration of shared

visual attention in collaborative programming. PPIG, 05 2009.

[44] S. Pietinen, R. Bednarik, and M. Tukiainen. Shared visual attention in

collaborative programming: A descriptive analysis. In Proceedings of the

2010 ICSE Workshop on Cooperative and Human Aspects of Software

Engineering, CHASE '10, pages 21�24, New York, NY, USA, 2010.

ACM.

[45] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do

professional developers comprehend software? In Proceedings of the

34th International Conference on Software Engineering, ICSE '12, pages

255�265, Piscataway, NJ, USA, 2012. IEEE Press.

[46] D. D. Salvucci and J. H. Goldberg. Identifying �xations and saccades

in eye-tracking protocols. In Proceedings of the 2000 Symposium on Eye

Tracking Research & Applications, ETRA '00, pages 71�78, New York,

NY, USA, 2000. ACM.

[47] I. Schröter, J. Krüger, J. Siegmund, and T. Leich. Comprehending

studies on program comprehension. In 2017 IEEE/ACM 25th

International Conference on Program Comprehension (ICPC), pages

308�311, May 2017.

[48] A. Seriai, O. Benomar, B. Cerat, and H. Sahraoui. Validation of software

visualization tools: A systematic mapping study. In 2014 Second IEEE

Working Conference on Software Visualization, pages 60�69, Sep. 2014.

[49] Z. Shara�, Y.-G. Guéhéneuc, and Z. Soh. A systematic literature review

on the usage of eye-tracking in software engineering. Elsevier Journal

of Software and Information Technology (IST), 07 2015.

[50] K. Sharma, P. Jermann, M.-A. Nüssli, and P. Dillenbourg. Under-

standing collaborative program comprehension: Interlacing gaze and

dialogues. Computer-Supported Collaborative Learning Conference,

CSCL, 1:430�437, 01 2013.

[51] J. Siegmund. Program comprehension: Past, present, and future.

In 2016 IEEE 23rd International Conference on Software Analysis,

BIBLIOGRAPHY 87

Evolution, and Reengineering (SANER), volume 5, pages 13�20, March

2016.

[52] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,

G. Saake, and A. Brechmann. Understanding understanding source code

with functional magnetic resonance imaging. In Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, pages

378�389, New York, NY, USA, 2014. ACM.

[53] A. Sillitti, G. Succi, and J. Vlasenko. Understanding the impact of

pair programming on developers attention: A case study on a large

industrial experimentation. In 2012 34th International Conference on

Software Engineering (ICSE), pages 1094�1101, June 2012.

[54] R. Stein and S. E. Brennan. Another person's eye gaze as a cue in

solving programming problems. In Proceedings of the 6th International

Conference on Multimodal Interfaces, ICMI '04, pages 9�15, New York,

NY, USA, 2004. ACM.

[55] M. . Storey. Theories, methods and tools in program comprehension:

past, present and future. In 13th International Workshop on Program

Comprehension (IWPC'05), pages 181�191, May 2005.

[56] M.-A. D. Storey, D. �ubrani¢, and D. M. German. On the use

of visualization to support awareness of human activities in software

development: A survey and a framework. In Proceedings of the 2005

ACM Symposium on Software Visualization, SoftVis '05, pages 193�202,

New York, NY, USA, 2005. ACM.

[57] M. Sulír, M. Nosá©, and J. Porubän. Recording concerns in source code

using annotations. Computer Languages, Systems & Structures, 46:44

� 65, 2016.

[58] H. van der Meulen, P. Varsanyi, L. Westendorf, A. L. Kun, and

O. Shaer. Towards understanding collaboration around interactive

surfaces: Exploring joint visual attention. In Proceedings of the 29th

Annual Symposium on User Interface Software and Technology, UIST

'16 Adjunct, pages 219�220, New York, NY, USA, 2016. ACM.

88 BIBLIOGRAPHY

[59] A. von Mayrhauser and A. M. Vans. From program comprehension to

tool requirements for an industrial environment. In [1993] IEEE Second

Workshop on Program Comprehension, pages 78�86, July 1993.

[60] J. Whitehead. Collaboration in software engineering: A roadmap.

In 2007 Future of Software Engineering, FOSE '07, pages 214�225,

Washington, DC, USA, 2007. IEEE Computer Society.

[61] C. Wohlin. Guidelines for snowballing in systematic literature studies

and a replication in software engineering. In Proceedings of the 18th

International Conference on Evaluation and Assessment in Software

Engineering, EASE '14, pages 38:1�38:10, New York, NY, USA, 2014.

ACM.

[62] E. Ye, X. Ye, and C. Liu. Teamwatch: Visualizing development

activities using a 3-d city metaphor to improve con�ict detection and

team awareness. PLOS ONE, 13(3):1�27, 03 2018.

[63] S. Yusuf, H. Kagdi, and J. I. Maletic. Assessing the comprehension

of uml class diagrams via eye tracking. In 15th IEEE International

Conference on Program Comprehension (ICPC '07), pages 113�122,

June 2007.

[64] I. Zayour and A. Hamdar. A qualitative study on debugging under

an enterprise ide. Information and Software Technology, 70:130 � 139,

2016.

89

List of Figures

2.1 Systematic Literature Review process based on Kitchenham

guidelines [26] . 6

2.2 Snowballing procedure according to Wohlin (p. 4,[61]) 8

2.3 Components of software comprehension model according to

O'Brien (p. 3,[39]) . 13

4.1 Search with snowballing procedure end results 27

4.2 Overview of the retrieved papers of each iteration 28

5.1 Evaluation methods . 45

5.2 Gaze plot example according to Yusuf et al. (p. 2,[63]) 52

5.3 Heatmap example according to Yusuf et al. (p. 7,[63]) 52

5.4 Topographic brain maps according to Busechian et al. (p. 3,[6]) 58

6.1 A visual summary of all the papers used in the literature review 67

6.2 Spider chart for the assessment of the approaches 70

6.3 E�ectiveness of the approaches 72

6.4 E�ciency of the approaches 73

6.5 Expressiveness of the approaches 74

90 LIST OF FIGURES

91

List of Tables

4.1 Target of the research questions 22

4.2 Inclusion and exclusion criteria applied to the review 24

4.3 Snowballing iteration results after the inclusion and exclusion

criteria based on title, abstract and the whole text 26

5.1 Summarisation of the literature review papers 43

5.2 Types of awareness information inspired by [62] 46

6.1 Evaluation of collaborative visualization tools 65

A.1 Evaluation of collaborative visualisation tools 94

B.1 Summarisation of the literature review papers 98

C.1 Types of awareness information inspired by [62] 102

92 LIST OF TABLES

93

Appendix A

Evaluation of collaborative

visualisation tools

The green colour refers to the availability of the feature in the approach. The

assessment is based on the features that are included in each approach. For

example the tools of desktop visualization are various and not all the tools

o�er the same features. So in this case, a feature is considered available, if

it is present in one of the selected tools in this approach (best case is taken).

94
APPENDIX A. EVALUATION OF COLLABORATIVE

VISUALISATION TOOLS

T
able

A
.1:

E
valuation

of
collaborative

visualisation
tools

A
ttention

shared
by

A
ttention

shared
by

Face
to

face
collaborative

visualization
tool

ID
E
plud-ins

collaboration
E
v
a
lu
a
tio

n
D
e
sk
to
p

M
o
b
ile

In
te
ra
c
tiv

e
A
n
n
o
ta
-

E
y
e

T
e
x
t

W
e
a
r

In
te
ra
c
tio

n
F
a
c
e
to

fa
c
e

fe
a
tu
re
s

v
isu

a
liz
a
-

v
isu

a
liz
a
-

su
rfa

c
e

tio
n

tra
ck
in
g

se
le
c
tio

n
b
a
se
d

d
a
ta

c
o
lla
b
o
ra
tio

n
tio

n
to
o
l

tio
n
to
o
l

v
isu

a
liz
a
-

�
lte

rin
g

tio
n
to
o
l

P
resent

T
im

e
[5
6
]

R
ecent

past
H
istorical

K
in
d
o
f

A
nnotation

v
ie
w

G
raph

view
[5
6
]

Statistical
view

N
a
v
ig
a
-

O
verview

/
tio

n
detailed

v
ie
w

C
oupled

[5
6
]

view
Z
oom

-able
view

E
�
e
c
tiv

e
-

Scalability
n
e
ss

Interopera-
[5
6
]

bility
L
earning

P
roductivity
M
ental

w
orkload

E
�
c
ie
n
c
y

C
ognitive

[2
9
,
5
7
,
6
]

w
orkload

D
istraction

elim
ination

95

A
tt
en
ti
on

sh
ar
ed

by
A
tt
en
ti
on

sh
ar
ed

by
Fa
ce

to
fa
ce

co
lla
bo
ra
ti
ve

vi
su
al
iz
at
io
n
to
ol

ID
E
pl
ud

-i
ns

co
lla
bo
ra
ti
on

E
v
a
lu
a
ti
o
n

D
e
sk
to
p

M
o
b
il
e

In
te
ra
c
ti
v
e

A
n
n
o
ta
-

E
y
e

T
e
x
t

W
e
a
r

In
te
ra
c
ti
o
n

F
a
c
e
to

fa
c
e

fe
a
tu
re
s

v
is
u
a
li
z
a
-

v
is
u
a
li
z
a
-

su
rf
a
c
e

ti
o
n

tr
a
ck
in
g

se
le
c
ti
o
n

b
a
se
d

d
a
ta

c
o
ll
a
b
o
ra
ti
o
n

ti
o
n
to
o
l

ti
o
n
to
o
l

v
is
u
a
li
z
a
-

�
lt
e
ri
n
g

ti
o
n
to
o
l

C
ha
ng
e

de
te
ct
io
n

C
on
�i
ct

de
te
ct
io
n

M
en
ta
l

m
od
el

Fa
m
ili
ar
i-

sa
ti
on

E
x
p
re
ss
i-

w
it
h
th
e

v
e
n
e
ss

pr
oj
ec
t

[2
1
,
2
9
,
4
0
]

In
te
nt
io
n

[4
5
,
5
7
,
6
2
]

A
ct
iv
it
y

Id
en
ti
ty

L
oc
at
io
n

Sp
he
re

of
in
�u

en
ce

96
APPENDIX A. EVALUATION OF COLLABORATIVE

VISUALISATION TOOLS

97

Appendix B

Summarisation of the literature

review papers

98
APPENDIX B. SUMMARISATION OF THE LITERATURE REVIEW

PAPERS

T
able

B
.1:

Sum
m
arisation

of
the

literature
review

papers

P
a
p
e
r

A
u
th
o
r

Y
e
a
r

E
n
v
iro

n
m
e
n
t

T
y
p
e
o
f

T
a
sk

ty
p
e

M
e
th
o
d
s
to

e
v
a
lu
a
te

p
a
rtic

ip
a
n
ts

th
e
stu

d
y

[4
4
]

S.
P
ietinen

2010
Industrial

P
rofessionals

C
ollaborative

E
ye

tracking
et

al.
like

environm
ent

program
m
ing

+
verbal

protocol
[1
3
]

C
.
C
ook

2005
N
\A

P
rofessionals

C
ollaborative

C
A
ISE

based
C
SE

tools
et

al.
program

m
ing

[5
7
]

M
.
Sulír

2016
Industrial

P
rofessionals+

P
rogram

O
bservation

(T
hink

aloud
et

al.
+

controlled
students

com
prehension

m
ethod)

environm
ent

[1
0
]

B
.
C
hu

2006
C
ontrolled

Students
P
rogram

video+
sound

are
recorded+

et
al.

environm
ent

com
prehension

w
ritten

notes
are

analysed
[6
4
]

I.
Z
ayour

2016
Industrial

environm
ent

P
rofessionals

debugging
O
bservation+

interview
et

al.
[5
]

J.
T
.
B
iehl

2007
C
ontrolled

P
rofessionals

C
ollaborative

Survey
+
interview

+
et

al.
environm

ent
program

m
ing

pre
and

post
observation

[1
4
]

S.
D
'A
ngelo

2017
Industrial

P
rofessionals

C
ollaborative

E
ye

tracking
+

et
al.

environm
ent

program
m
ing

video
analysis

+
interview

[4
5
]

T
.
R
oehm

2012
Industrial

P
rofessionals

P
rogram

O
bservation

(think
aloud

et
al.

environm
ent

com
prehension

m
ethod)

+
interview

[3
]

S.
B
altes

2015
Industrial

P
rofessionals

D
ebugging

P
ro�ling

tool
+
O
bservation

et
al.

environm
ent

+
students

(think
aloud

m
ethod)

+
interview

+
audio

record
+

video
of

the
screen

+
log

of
various

navigations

99

P
a
p
e
r

A
u
th
o
r

Y
e
a
r

E
n
v
ir
o
n
m
e
n
t

T
y
p
e
o
f

T
a
sk

ty
p
e

M
e
th
o
d
s
to

e
v
a
lu
a
te

p
a
rt
ic
ip
a
n
ts

th
e
st
u
d
y

[4
2
]

S.
P
ie
ti
ne
n

20
08

In
du

st
ri
al

P
ro
fe
ss
io
na
ls

C
ol
la
bo
ra
ti
ve

E
ye

tr
ac
ki
ng

+
sc
re
en

ca
pt
ur
e

et
al
.

en
vi
ro
nm

en
t

pr
og
ra
m
m
in
g

w
it
h
cu
rs
or

of
th
e
te
st

pr
og
ra
m
s

+
fa
ci
al
vi
de
os

of
us
er
s

[2
9
]

W
.
M
aa
le
j

20
14

In
du

st
ri
al

P
ro
fe
ss
io
na
ls

P
ro
gr
am

Su
rv
ey

+
ob
se
rv
at
io
n
+

et
al
.

en
vi
ro
nm

en
t

co
m
pr
eh
en
si
on

in
te
rv
ie
w

[6
2
]

E
.
Y
e

20
18

C
on
tr
ol
le
d

P
ro
fe
ss
io
na
ls

C
ol
la
bo
ra
ti
ve

V
id
eo

re
co
rd
in
g
+

ch
at

lo
gs

et
al
.

en
vi
ro
nm

en
t

+
st
ud

en
ts

pr
og
ra
m
m
in
g

+
su
rv
ey

+
C
V
S
re
po
si
to
ry

[4
3
]

S.
P
ie
ti
ne
n

20
12

In
du

st
ri
al

P
ro
fe
ss
io
na
ls

C
ol
la
bo
ra
ti
ve

E
ye

T
ra
ck
in
g

et
al
.

en
vi
ro
nm

en
t

pr
og
ra
m
m
in
g

[1
6
]

R
.
D
eL
in
e

20
05

C
on
tr
ol
le
d
+

in
du

st
ri
al

P
ro
fe
ss
io
na
ls

P
ro
gr
am

In
te
rv
ie
w
+
ob
se
rv
at
io
n

et
al
.

en
vi
ro
nm

en
t

co
m
pr
eh
en
si
on

[4
0
]

I.
O
m
or
on
yi
a

20
09

C
on
tr
ol
le
d

St
ud

en
ts

C
ol
la
bo
ra
ti
ve

ID
E
in
te
ra
ct
io
ns

et
al
.

en
vi
ro
nm

en
t

pr
og
ra
m
m
in
g

[6
]

S.
B
us
ec
hi
an

20
18

C
on
tr
ol
le
d

St
ud

en
ts

C
ol
la
bo
ra
ti
ve

B
ra
in

ac
ti
vi
ty

of
th
e
us
er

et
al
.

en
vi
ro
nm

en
t

pr
og
ra
m
m
in
g

[5
4
]

R
.
St
ei
n

20
04

C
on
tr
ol
le
d

P
ro
fe
ss
io
na
ls

D
eb
ug
gi
ng

E
ye

tr
ac
ki
ng

+
vi
de
o
re
co
rd
in
g

et
al
.

en
vi
ro
nm

en
t

+
ob
se
rv
at
io
n
(t
hi
nk

al
ou
d

m
et
ho
d)

+
au
di
o
re
co
rd

[8
]

M
.
L
an
za

20
10

C
on
tr
ol
le
d

St
ud

en
ts

C
ol
la
bo
ra
ti
ve

Sy
de

et
al
.

en
vi
ro
nm

en
t

pr
og
ra
m
m
in
g

[1
7
]

R
.
D
eL
in
e

20
05

In
du

st
ri
al

P
ro
fe
ss
io
na
ls

P
ro
gr
am

O
bs
er
va
ti
on
(t
hi
nk

al
ou
d
m
et
ho
d)

et
al
.

en
vi
ro
nm

en
t

co
m
pr
eh
en
si
on

+
lo
g
of

co
de

in
fo
rm

at
io
n

100
APPENDIX B. SUMMARISATION OF THE LITERATURE REVIEW

PAPERS

P
a
p
e
r

A
u
th
o
r

Y
e
a
r

E
n
v
iro

n
m
e
n
t

T
y
p
e
o
f

T
a
sk

ty
p
e

M
e
th
o
d
s
to

e
v
a
lu
a
te

p
a
rtic

ip
a
n
ts

th
e
stu

d
y

[5
3
]

A
.
Sillitti

2012
Industrial

P
rofessionals

C
ollaborative

P
R
O
M

et
al.

environm
ent

program
m
ing

[3
2
]

K
.
M
aruyam

a
2014

N
\A

N
\A

P
rogram

N
otes

+
recorded

actions
et

al.
com

prehension
[2
7
]

C
.
C
hen

2013
C
ontrolled

P
rofessionals

P
rogram

A
verage

correctness+
et

al.
environm

ent
+

students
com

prehension
+

com
pletion

tim
e

[5
8
]

H
.
van

der
M
eulen

2016
C
ontrolled

Students
C
ollaborative

E
ye

tracking
et

al.
environm

ent
program

m
ing

[9
]

M
.-Y

.
C
hen

2015
C
ontrolled

Students
P
rogram

E
ye

tracking
+
video

recording
et

al.
environm

ent
com

prehension
+

interview
[5
0
]

K
.
Sharm

a
2013

C
ontrolled

Students
P
rogram

E
ye

tracking
+
observation

et
al.

environm
ent

com
prehension

[2
5
]

Jerm
ann

2012
C
ontrolled

Students
C
ollaborative

E
ye

tracking
+
video

recording
et

al.
environm

ent
program

m
ing

+
logs

of
selection

+
audio

record

101

Appendix C

Types of awareness information

102 APPENDIX C. TYPES OF AWARENESS INFORMATION

T
able

C
.1:

T
ypes

of
aw

areness
inform

ation
inspired

by
[62]

T
o
o
l/

T
y
p
e

A
w
a
rn
e
ss

A
w
a
rn
e
ss

A
w
a
rn
e
ss

In
te
g
ra
te
d

T
y
p
e
o
f

M
o
d
e
l

so
u
rc
e

v
isu

a
liz
a
tio

n
�
lte

r
c
o
m
m
u
n
ic
a
tio

n
in
fo
rm

a
tio

n

T
eam

-
Standalone

V
ersion

control
3D

visualization
A
w
areness

N
\A

H
istorical

W
A
T
C
H

repository,
local

for
each

developer
inform

ation
and

real
tim

e
[6
2
]

w
orkspace

and
Standard

view
for

are
chosen

by
inform

ation
issue

tracking
all

team
m
em

ber
the

developer
system

T
eam

Standalone
L
ocal

w
orkspace

2D
visualization

A
w
areness

P
hone

call
H
istorical

radar
for

each
developer

inform
ation

m
essage

and
and

real
tim

e
m
obile

and
team

leader
are

chosen
by

em
ail

inform
ation

[8
,
9
]

the
developer

C
R
I

E
clipse

V
ersion

control
2D

visualization
A
w
areness

N
\A

H
istorical

m
odel

plug-in
repository

and
for

each
developer

inform
ation

and
real

tim
e

[4
0
]

local
w
orkspace

are
chosen

by
inform

ation
the

developer
FA

ST
-

Standalone
V
ersion

control
2D

standard
view

N
\A

A
synchronous

H
istorical

D
ash

repository,
local

for
all

com
m
unication

and
real

tim
e

[5
]

w
orkspace

team
m
em

ber
w
ith

annotations
inform

ation
T
eam

Standalone
L
ocal

w
orkspace

2D
standard

view
N
\A

N
\A

H
istorical

tracks
for

all
and

real
tim

e
[1
6
]

team
m
em

ber
inform

ation
C
ode-

Standalone
C
odeForest

3D
visualization

A
w
areness

A
synchronous

H
istorical

Forest
autom

atically
for

each
developer

inform
ation

com
m
unication

inform
ation

[3
2
]

records
a

are
chosen

by
w
ith

annotations
(user

action
user's

actions
the

developer
+
annotations)

R
ecording

Standard
A
nnotation

are
A
nnotations

D
eveloper

A
synchronous

H
istorical

concerns
ID

E
of

w
ritten

by
the

are
included

searches
for

com
m
unication

inform
ation

using
java

user
in

the
code

speci�cs
w
ith

annotations
annotations

language
annotation

w
ith

[5
7
]

search
function

103

T
o
o
l/

T
y
p
e

A
w
a
rn
e
ss

A
w
a
rn
e
ss

A
w
a
rn
e
ss

In
te
g
ra
te
d

T
y
p
e
o
f

M
o
d
e
l

so
u
rc
e

v
is
u
a
li
z
a
ti
o
n

�
lt
e
r

c
o
m
m
u
n
ic
a
ti
o
n

in
fo
rm

a
ti
o
n

Sc
am

p
E
cl
ip
se

V
er
si
on

co
nt
ro
l

2D
vi
su
al
iz
at
io
n

N
\A

N
\A

R
ea
l
ti
m
e

an
d
sy
de

pl
ug
-i
n

re
po
si
to
ry

an
d

fo
r
ea
ch

de
ve
lo
pe
r

in
fo
rm

at
io
n

[2
7
]

lo
ca
l
w
or
ks
pa
ce

P
ol
lin

at
or

E
cl
ip
se

V
er
si
on

co
nt
ro
l

2D
st
an
da
rd

vi
ew

N
\A

A
sy
nc
hr
on
ou
s

H
is
to
ri
ca
l

[6
4
]

pl
ug
-i
n

re
po
si
to
ry

an
d

fo
r
al
l

co
m
m
un

ic
at
io
n

an
d
re
al
ti
m
e

lo
ca
l
w
or
ks
pa
ce

te
am

m
em

be
r

in
fo
rm

at
io
n

C
A
IS
E

E
cl
ip
se

V
er
si
on

co
nt
ro
l

2D
vi
su
al
iz
at
io
n

A
w
ar
en
es
s

D
ir
ec
t

H
is
to
ri
ca
l

ba
se
d

pl
ug
-i
n

re
po
si
to
ry

an
d

fo
r
ea
ch

de
ve
lo
pe
r

in
fo
rm

at
io
n

co
m
m
un

ic
at
io
n

an
d
re
al
ti
m
e

C
SE

to
ol

lo
ca
l
w
or
ks
pa
ce

ar
e
ch
os
en

by
in
fo
rm

at
io
n

[1
3
,
3
2
]

th
e
de
ve
lo
pe
r

W
ea
r

E
cl
ip
se

V
er
si
on

co
nt
ro
l

2D
st
an
da
rd

N
\A

A
sy
nc
hr
on
ou
s

H
is
to
ri
ca
l

ba
se
d

pl
ug
-i
n

re
po
si
to
ry

an
d

vi
ew

fo
r
al
l

co
m
m
un

ic
at
io
n

an
d
re
al
ti
m
e

�l
te
ri
ng

lo
ca
l
w
or
ks
pa
ce

te
am

m
em

be
r

w
it
h
an
no
ta
ti
on
s

in
fo
rm

at
io
n

[1
7
]

C
ol
la
bo
ra
ti
ve

N
\A

D
ir
ec
t

Sh
ar
ed

vi
su
al

N
\A

D
ir
ec
t

R
ea
l
ti
m
e

pr
og
ra
m
m
in
g

co
m
m
un

ic
at
io
n

at
te
nt
io
n
or

co
m
m
un

ic
at
io
n

in
fo
rm

at
io
n

[5
3
,
4
2
,
6
]

sh
ar
ed

di
sp
la
y

[3
,
6
4
,
1
0
]

[1
4
]

E
ye

E
cl
ip
se

E
ye

T
ra
ck
er

2D
st
an
da
rd

N
\A

A
sy
nc
hr
on
ou
s
or

H
is
to
ri
ca
l

tr
ac
ki
ng

pl
ug
-i
n

sh
ar
ed

ey
e

vi
ew

fo
r
al
l

sy
nc
hr
on
ou
s

or
re
al
ti
m
e

[4
4
,
1
4
]

ga
ze

te
am

m
em

be
r

co
m
m
un

ic
at
io
n

in
fo
rm

at
io
n

[5
4
,
4
3
]

T
ex
t

E
cl
ip
se

Se
le
ct
io
n
of

2D
st
an
da
rd

N
\A

Sy
nc
hr
on
ou
s

R
ea
l
ti
m
e

se
le
ct
io
n

pl
ug
-i
n

a
pa
rt
of

vi
ew

fo
r
al
l

co
m
m
un

ic
at
io
n

in
fo
rm

at
io
n

[2
5
]

th
e
co
de

te
am

m
em

be
r

104 APPENDIX C. TYPES OF AWARENESS INFORMATION

	Introduction
	Motivation
	Goal
	Scope of the research
	Stucture of the research

	Theory
	Systematic literature review
	Snowballing research procedure
	Collaboration in software engineering
	Program comprehension

	Related work
	Program comprehension
	Software visualization
	Eye tracking

	Review method
	Research question and search String
	Inclusion and exclusion criteria
	Method of selection of the primary studies
	Results of the Selection
	Analysis of the papers
	Start Set paper
	First iteration
	Second iteration
	Third iteration
	Fourth iteration

	Results
	RQ1: Approaches to steer the attention of the user
	Attention sharing by collaborative visualization tools
	Attention sharing by IDE plug-ins
	Attention sharing by face to face collaboration

	RQ2: Attention measurement during collaborative programming
	Eye tracking
	Multichannel EEG device
	Observation

	RQ3: Correlation between collaboration and attention data
	 Threats to validity

	Evaluation and discussion
	Evaluation features
	Approaches evaluation
	Gaps and similarities
	Modified Venn diagram
	Radar chart
	Stacked bar chart

	Discussion

	Summary and outlook
	Summary
	Outlook

	Evaluation of collaborative visualisation tools
	Summarisation of the literature review papers
	Types of awareness information

