
Gottfried Wilhelm
Leibniz Universität Hannover

Faculty of Electrical Engineering and Computer
Science

Institute of Practical Computer Science
Software Engineering Group

Advancement of Security Monitoring
in JIRA with JavaScript Support

Bachelor Thesis

in Computer Science

by

Amin Akbariazirani

First Examiner: Prof. Dr. Kurt Schneider
Second Examiner: Dr. Jil Klünder

Supervisor: M. Sc. Fabien Patrick Viertel

Hannover, August 26, 2019

Declaration of Independence

I hereby certify that I have written the present bachelor thesis independently
and without outside help and that I have not used any sources and aids other
than those specified in the work. The work has not yet been submitted to
any other examination office in the same or similar form.

Hannover, August 26, 2019

Amin Akbariazirani

i

Abstract

The dependence of human activities on software is increasing by day.
Although the benefits of using computers are undoubtedly significant, there
may also be some risks involved. This includes the possibility of software
vulnerabilities potentially resulting in a breach of the predefined security
policy. This places a heavy burden on software developers to create
software artifacts that are as free as possible from potential exploits due
to vulnerabilities. In a software project, both source code and the imported
libraries can contain vulnerabilities. Manual analysis of software projects
in search for vulnerabilities is not only time consuming but also requires
corresponding knowledge. To enhance this process, software solutions such
as the ProDynamics plugin for the JIRA project management software can
be used.

The ProDynamics plug-in, which was developed to assist teams in various
phases of software development including security assurance, is equipped
with a vulnerability detector for the programming language Java. The
vulnerability detector analyzes sprint cycles and provides software developers
with information about possible vulnerabilities both in the source code and
in the used libraries.

In course of this thesis, the ProDynamics plugin, in particular the
”Security Checker“ module, is extended to also support JavaScript. This
process includes developing a JavaScript tokenizer and defining code blocks
according to the specifications of the JavaScript syntax. Since JavaScript
source code and library files share the same file extension, ”.js“, a case by
case analysis of JavaScript files might not be sufficient for accurate library
analysis. The library checker is therefore extended to not only process files
based on the broad characteristics of JavaScript library files but also to
extract libraries which are imported through the package manager NPM.

ii

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Proposed Solution . 2
1.3 Structure of the Thesis . 2

2 Basics 3
2.1 Software Vulnerability . 3
2.2 Code Clone Detection . 3
2.3 Detecting Vulnerable Libraries 4
2.4 JavaScript . 5
2.5 Node Package Manager (NPM) 5
2.6 JIRA . 6

3 Related Works 8

4 Concept 10
4.1 ProDynamics Plugin for JIRA 10
4.2 Detecting Source Code Vulnerabilities 13

4.2.1 The Evolution of JavaScript 13
4.2.2 Defining Blocks . 14

4.3 Detecting Library Vulnerabilities 15
4.3.1 Identifying NPM Libraries 16
4.3.2 Identifying JavaScript Libraries 17

5 Implementation 19
5.1 Source Code Vulnerability Detector 19

5.1.1 JavaScript Parser and Tokenizer 19
5.2 Library Checker . 22
5.3 Relevant Database Schema in JIRA 24
5.4 JSON Support for the NVD Database 24
5.5 Functional and Graphical Improvements 25
5.6 Unexpected Difficulties . 29

iii

CONTENTS iv

6 Evaluation 30
6.1 Performance Indicators . 30
6.2 Evaluating Code Clone Detection 31

6.2.1 Essential Code Samples 32
6.2.2 Code Clone Detection Analysis 34

6.3 Evaluating Library Detection 37

7 Summary and Outlook 40
7.1 Summary . 40
7.2 Outlook . 41

Chapter 1

Introduction

Software has directly or indirectly become a part of our day to day lives.
From buying groceries to our mobile phones, software has probably played
a part in either the process of purchasing, manufacturing or shipping of the
product. As time goes by, human activities are becoming more and more
dependant on computers. This has led to the number of microcontrollers
and microprocessors largely surpassing the total human population [9]. This
puts an enormous burden on software developers to create software that is
as free as possible from all sorts of vulnerabilities. With software infiltrating
many aspects of our lives, the crucial task of finding and neutralizing software
vulnerabilities is gaining in importance.

Articles about data breaches and exploited software vulnerabilities are
commonplace in the news. A very recent example is the discovery of
a targeted surveillance attack on the messaging app WhatsApp where a
software vulnerability was used by hackers to read “end-to-end encrypted”
massages exchanged on the platform [16].

The task of identifying and fixing possible software vulnerabilities is
of utmost importance. Vulnerabilities can either be contained in the
source code or in the included libraries. In order to identify all possible
vulnerabilities, a proper approach would be to identify third-party libraries
and check them against databases like the National Vulnerability Database
(NVD) [29] and also to compare the source code itself to a database of already
known vulnerable code [28].

1.1 Problem

Since the process of finding vulnerabilities is not only time consuming but
also requires a certain set of skills [2], a more efficient use of resources is
to semi-automate this process and to outsource this crucial but knowledge
intensive task to computers. In recent years, JavaScript has evolved into
one of the most popular programming languages. In addition to client-

1

CHAPTER 1. INTRODUCTION 2

side web applications, it is also used for server-side, mobile and desktop
applications [27]. Methods which are used for vulnerability detection can
under circumstances be shared across different programming languages [2]
but since code blocks and syntaxes can vary, they often need to be analyzed
separately. Hence, an independent research has to be done in order to
efficiently detect JavaScript vulnerabilities.

1.2 Proposed Solution

A plugin developed by M. Matthaei for the project management software
JIRA is the basis of this thesis [20]. This plugin is designed to automate the
process of finding vulnerabilities for projects written in the programming
language Java. This is done by comparing code blocks and libraries with
corresponding vulnerability databases. The purpose of this thesis is to extend
the above mentioned plugin to support JavaScript. This was achieved by
analyzing the project to identify JavaScript libraries and their associated
metadata, and by implementing an approach to detect code clones under
JavaScript.

1.3 Structure of the Thesis

This thesis is structured as follows. In chapter two, the key concepts which
are used in this thesis will be discussed. This will include some basics
about vulnerabilities, the used vulnerability databases and the programming
language JavaScript. To help understand this project better, the subsequent
chapter is dedicated to introducing some related works to this thesis. In
chapter four the concepts of code clone detection and library analysis will
be presented. The implementation of these concepts and the unexpected
hardships which appeared along the way will be discussed in chapter five.
Chapter six will be focusing on evaluating the implemented vulnerability
detector for the programming language JavaScript. The thesis will be
wrapped up in chapter eight and possible ideas for further development of
the software will be proposed.

Chapter 2

Basics

In this chapter, the fundamental concepts and tools which were used for
this project will be presented and discussed. This includes but is not
limited to defining software vulnerability, introducing the principles of code
clone detection, elaborating possible approaches for vulnerability detection
in libraries and explaining some characteristics of the programming language
JavaScript.

2.1 Software Vulnerability

According to I. V. Krsul, ”a software vulnerability is an instance of an error
in the specification, development, or configuration of software such that its
execution can violate the security policy“ [15]. According to the MITRE
Corporation and with focus on the source code of a software product, the
definition of a vulnerability can be defined as a weakness in the code that with
its exploitation might result in a negative impact to confidentiality, integrity,
or availability [21]. As the mentioned definitions point out, vulnerabilities in
the source code might affect information security so it is an important task
to identify and fix them in order to ensure information security.

2.2 Code Clone Detection

Identifying vulnerable code is not a task typical software engineers are
trained to fulfill [28]. Fortunately, there are publicly accessible vulnerability
databases that can be used to facilitate this task. For instance, the
National Vulnerability Database aka NVD. This database consists of known
vulnerabilities and some corresponding information about them. This
includes among other things, a base score identifying the criticality of
the vulnerability, some references to advisories, solutions and tools and a
Common Vulnerabilities and Exposures ID (CVE ID) which can be used to
classify vulnerabilities accordingly. Though the NVD database enlists many

3

CHAPTER 2. BASICS 4

relevant information, code samples are rarely included [28]. The availability
of a vulnerable code database is a vital prerequisite for this project and the
approach used in [28] for extracting vulnerable code samples from large scale
repositories like GitHub has been used for this purpose.

In order to find similarities between source code and known vulnerable
code snippets, the possibility of diversified syntaxing has to be taken into
consideration. In this project, the concept called SourcererCC introduced in
[25] has been adopted to tackle the above challenge. This approach, which
makes use of the tokenization of code snippets, will help us identify many
code clones but comes at the cost of a certain amount of similarity in syntax,
being crucial for it to function properly. Figure 2.1 shows the process of code
clone detection as used in this project and implemented by [28].

Figure 2.1: Code clone detection as implemented in [28]

2.3 Detecting Vulnerable Libraries

In the world of software development, reusing code through available libraries
is done quite regularly [29]. Research has shown that reusing already
available software artifacts increases the productivity of a development
team, speeds up the time-to-market process and improves the quality of
the resulting software [10, 17]. On the other hand the more libraries are
used, the greater the probability of exposure to vulnerabilities may get [30].
It is therefore good practice to identify vulnerable libraries at an early stage.
In order to do so, an effective approach would be to collect the metadata of
all libraries and check them against a database of known vulnerable libraries.
As discussed in 2.2, every entry in the NVD database consists of different
information, a few of which have been mentioned earlier.

Another useful information available in the NVD entries is the Common
Platform Enumeration (CPE) which consists of different information about
the products in which the corresponding vulnerability has been detected in.
This information includes but is not limited to the product’s name, vendor
and version number. The convenient structure of the CPE can therefore be
used to efficiently search for entries in the NVD database which correspond
to the metadata of a library. The above approach has been implemented

CHAPTER 2. BASICS 5

Figure 2.2: Library detection as implemented in [29]

in [29] for the programming language Java. This thesis uses the mentioned
software as its basis for the JavaScript library checker. Figure 2.2 shows the
process of how the library checker is originally used to identify vulnerable
libraries as implemented by [29].

2.4 JavaScript

The programming language JavaScript was first introduced by the Netscape
Communications Corporation in 1995. According to the initial press released
by the Netscape corporation, ”JavaScript is an easy-to-use object scripting
language designed for creating live online applications that link together
objects and resources on both clients and servers“ [3]. This was the initial
idea behind JavaScript. Today, JavaScript can be used for both front-end
an back-end development. In order to standardize scripting languages like
JavaScript, Ecma International created the ECMAScript scripting language
specification defined in ECMA-262 and ISO/IEC 16262. Since the initial
release of ECMAScript in 1997, 9 new editions have been published [4].
Many containing new syntax and semantic support. Table 2.1 summarizes
the changes to ECMAScript over time. This gradual updates is one of the
points that has to be kept in mind while developing software aimed at the
programming language JavaScript.

2.5 Node Package Manager (NPM)

One of the cornerstones of efficient software development is to reuse software
artifacts developed by other programmers. In order to support developers,
modern software ecosystems often include package managers to automate the
process of installing and maintaining software dependencies. One the most
well known package managers for the programming language JavaScript is
the Node Package Manager short NPM. As of February 2019, NPM hosts
800,000 software packages and it is expected that this number will continue

CHAPTER 2. BASICS 6

Ver. Official Name Description

1 ECMAScript 1 First Edition.

2 ECMAScript 2 Editorial changes only.

3 ECMAScript 3 Added Regular Expressions.
Added try/catch.

5 ECMAScript 5

Added ”strict mode“.
Added JSON support.
Added String.trim().
Added Array.isArray().
Added Array Iteration Methods.

5.1 ECMAScript 5.1 Editorial changes.

6 ECMAScript 2015

Added let and const.
Added default parameter values.
Added Array.find().
Added Array.findIndex().

7 ECMAScript 2016 Added exponential operator (**).
Added Array.prototype.includes.

8 ECMAScript 2017

Added string padding.
Added new Object properties.
Added Async functions.
Added Shared Memory.

9 ECMAScript 2018

Added rest/spread properties.
Added Asynchronous iteration.
Added Promise.finally().
Additions to RegExp.

Table 2.1: ECMAScript changes over time [4]

to grow. As a major source of JavaScript packages for client and server
side projects, NPM has become one of the central component of JavaScript
development [31].

2.6 JIRA

JIRA is a web based project management software developed by Atlassian.
It can be used for issue tracking and project management. According to
Atlassian, JIRA is used by 150,000+ teams worldwide [1]. One of the
customers of JIRA, are software developers who can use it to manage scrum
cycles and improve the development process accordingly. According to the
official Scrum Body of Knowledge, ”Scrum is founded on empirical process

CHAPTER 2. BASICS 7

control theory, or empiricism. Empiricism asserts that knowledge comes from
experience and making decisions based on what is known. Scrum employs an
iterative, incremental approach to optimize predictability and control risk“
[26]. The key concept in the scrum framework is the iterative approach
which is defined by time cycles in which participants have to fulfill specific
assignments. JIRA also offers a plugin system which can be used to develop
independent plugins adding features to it.

Chapter 3

Related Works

According to W. Jimenez et al., detecting software vulnerabilities in the
process of software construction can be performed by tools that are either
designed based on static and/or dynamic techniques [11]. Static techniques
refer to tools which analyze the source code without executing it. On the
other hand, dynamic techniques are tools that run the source code in a
controlled environment and collect relevant information for vulnerability
detection. The approach implemented in this thesis which is a continuation
to W. Brunotte’s master thesis, [2] uses static techniques, in particular lexical
analysis, to detect vulnerabilities in the source code.

The same paper states that in lexical analysis, a sequence of tokens is
extracted from the source code and compared with a database of known
vulnerabilities. ”SourcererCC“, the underlying software artifact used in this
thesis for clone detection was briefly described in section 2.2. Although
”SourcererCC“ was designed to be reliable, complete, fast and scalable [25],
W. Jimenez et al. state that tools created based on lexical analysis have
generally the downside of generating a high number of false positives due to
the non-observance of syntax and grammar. The proposed approach by W.
Jimenez et al. is to create vulnerability models that are based on particular
conditions of the source code. If any of the condition occur, the related
vulnerability will be detected.

S. Kals et al. sub-classifies the procedure of testing applications for the
presence of bugs and vulnerabilities into two main categories. Black box
and white box testing. A procedure is referred to as white box testing, if the
vulnerability detection process relies on scanning the source code for possible
deficiencies. On the other hand in black box testing, The source code is not
available for the test environment and special uses cases are sent to a running
instance of the software. A comparison between the returned values and the
expected output, will determine the presence of possible vulnerabilities [12].
In the process of this thesis the aim was to create a JavaScript vulnerability
detection method according to the concept of white box testing.

8

CHAPTER 3. RELATED WORKS 9

The programming language JavaScript is widely used in web development
thus, the black-box web vulnerability scanner ”SecuBat“ which was developed
by S. Kals et al. can be a complementary black box testing tool for the
JavaScript vulnerability detector developed in the course of this thesis.
According to S. Kals et al., ”SecuBat is a generic and modular web
vulnerability scanner that, similar to a port scanner, automatically analyzes
web sites with the aim of finding exploitable SQL injection and XSS
vulnerabilities.“ [12].

Chapter 4

Concept

The goal of this thesis is to extend the already available vulnerability
detection software for Java projects defined in 2.2 and 2.3 to support
JavaScript. Therefore, it is necessary to understand the structure of the
JavaScript development ecosystem and the most used tools regarding this
programming language. In this chapter, the underlying JIRA plugin for
which this project was developed will be introduced, the programming
language JavaScript will be examined in more detail and the relevant
differences between JavaScript and Java will be discussed.

4.1 ProDynamics Plugin for JIRA

ProDynamics is a plugin developed for the project management software
JIRA. It can be used to analyze and manage various aspects of a software
project with regard to each development sprint. Using ProDynamics, a
project can be examined in its retrospective, futurespective and dynamic
aspects. This project, as a continuation to the security checker plugin, is
developed as part of the futurespective functionality of the ProDynamics
JIRA plugin. Figure 4.1 shows the overview page of the ProDynamics plugin
which was introduced by F. Kortum et al. in [14].

This thesis is a continuation of the ”Security Checker“ functionality
developed by M. Matthaei [20]. The architecture of the ”Security Checker“
has been adapted and customized to support both code and library checking
functionalities in Java and JavaScript. Figure 4.2 offers and overview of the
architecture behind the ”Security Checker“ as implemented in course of this
thesis. The architecture is described more closely in chapter 5.

10

CHAPTER 4. CONCEPT 11

F
ig
ur
e
4.
1:

O
ve
rv
ie
w

of
th
e
P
ro
D
yn

am
ic
s
JI
R
A

pl
ug

in
[1
4]

CHAPTER 4. CONCEPT 12

F
ig
ur
e
4.
2:

A
rc
hi
te
ct
ur
e
D
ia
gr
am

of
th
e
”S
ec
ur
it
y
C
he
ck
er
“

CHAPTER 4. CONCEPT 13

4.2 Detecting Source Code Vulnerabilities

According to [28] which was used as the basis for this thesis’s JavaScript code
clone detection, the process of finding code clones consists of the following
four steps:

1. Pre-Processing

2. Code Processing

3. Clone Detection

4. Generating Results

In steps one and two, code blocks extracted from the vulnerability database
and the to be processed source code files have to be parsed, tokenized and
indexed. For this purpose, an inverted index is created for each code block,
containing its respective tokens and the times each token was used inside
the code block. The list of all inverted indexes is then saved into the book
keeping information file which keeps track of all files and, if available, its
corresponding CVE Id. In step three, ”SourcererCC“ will use the above
information to match code blocks from the source code to code blocks
extracted from the vulnerability database and saves the discovered code
clones to the database.

4.2.1 The Evolution of JavaScript

In 2.4 it was pointed out that the programming language JavaScript has
been standardized by the ECMAScript scripting language specification. This
in turn has created different versions of JavaScript which are backward
compatible and diverse in syntax. As an example, in ECMAScript 2015, the
keywords ”let“ and ”const“ where added to the list of keywords supported
by JavaScript. These keywords are used to declare variables alongside the
original ”def“. In JavaScript, variables can also be declared without a prefix
keyword. The diverse syntax of JavaScript has to be taken note of in the
process of parsing.

One of the main differences between Java and JavaScript is that
JavaScript has a more relaxed syntax and fewer rules. An example for this
would be that in Java, code needs to be written inside classes, and functions
play a fundamental role in delivering logic to the code. On the other hand in
JavaScript code and logic can be written anywhere. A very obvious instance
of the above is the main function in Java as the execution point of the whole
project. In JavaScript the code itself is executed at run-time and a main
function is basically irrelevant unless coded accordingly.

Prior to ECMAScript 6 (ES6), JavaScript was considered a solely
prototype-based language (inheritance with code reuse) but with the release

CHAPTER 4. CONCEPT 14

of ES6, JavaScript has also adopted the class-based nature of Java. So
JavaScript now supports both approaches. Listing 4.1 shows how a class is
defined in Java.

1 public class Sample {
2 String name;
3 Sample(String name){
4 this.name = name;
5 }
6 public static void main(String args []) {
7 Sample block1 = new Sample("This is a sample class");
8 System.out.println(block1.name);
9 // Prints "This is a sample class"

10 }
11 }

Listing 4.1: Defining and using a class in Java

Listing 4.2 is the same Java class defined in JavaScript version ES6.

1 class Sample {
2 constructor(name) {
3 this.name = name;
4 }
5 }
6 const block1 = new Sample(’This is a sample class’);
7 console.log(block1.name);
8 // Prints "This is a sample class"

Listing 4.2: Defining and using a class in JavaScript

Prior to the release of ES6, the class syntax was not available therefore
a JavaScript object had to be defined differently. Listing 4.3 shows how the
same Java class has to be defined in JavaScript prior to the release of version
ES6.

1 var block1 = {
2 name : ’This is a sample class’
3 };
4 console.log(block1.name);
5 // Prints "This is a sample class"

Listing 4.3: Objects in JavaScript prior to ECMAScript 6 (ES6)

4.2.2 Defining Blocks

The code clone detector which was first mentioned in 2.2, is one of the
key basics of this thesis. This approach, first introduced by H.Sanjani with
the name ”SourcererCC“, uses code blocks in order to identify similarities
between two code snippets [25]. These blocks have to be identified according
to the programming language which is being processed. For the programming
language Java, F. P. Viertel et al. decided to use methods and constructors as

CHAPTER 4. CONCEPT 15

blocks [28]. Since the programming languages JavaScript and Java have a few
differences in terms of Syntax, code blocks need to be defined differently. One
of the main differences between the two is that in JavaScript it is common
practice to write code outside of functions. This means that a JavaScript
file might consist of multiple lines of code but not include any functions. So
code written outside of functions have to be identified as code blocks. Since
code blocks might be written anywhere outside of functions, lines which are
written in between functions can also be singled out as code blocks.

Another characteristic of JavaScript is that functions can be defined as
variables. All function may in turn contain more functions resulting in a
nested list of functions within each other. Functions can also return functions
as output. These inner functions are called ”closures“. Closures are one of
the key capabilities of JavaScript. These nested functions have access to
all variables and functions of the outer function while not having access to
the variables of their inner functions. This means that some variables and
functions might have a longer lifetime than the scope in which they are
defined in. A closure occurs when the inner function is made available to
any scope outside the outer function [22]. See 4.4. This characteristic of
JavaScript means that every inner function also has to be identified as a
code block.

1 var func1 = function(bb){
2 var func2 = function(vv){
3 return function(cc){
4 return vv + cc;
5 };
6 }
7 return func2(bb);
8 }
9 console.log(func1 (5) (10));

10 // Prints 15

Listing 4.4: Nested functions in JavaScript with a function as return value

Before 2015, JavaScript didn’t support Java like objects in the form of
classes but as of ECMAScript 6 classes are also part of JavaScript’s syntax
and semantic. See section 4.2.1. Classes can not only define an object but
also contain logic. This means that a class also has the capacity to be defined
as a block.

4.3 Detecting Library Vulnerabilities

In addition to the source code, libraries can also contain vulnerabilities. So
it of utmost importance to not only scan the source code for vulnerabilities
but also libraries. In JavaScript, libraries have the same file extension as
source code. So libraries have to be identified as such accordingly.

CHAPTER 4. CONCEPT 16

4.3.1 Identifying NPM Libraries

As mentioned in section 2.5, node package manager (NPM) is a major source
for JavaScript libraries for client and server side projects. This assumption
can be validated by analyzing some of the trending JavaScript repositories on
GitHub. Table 4.1 lists 20 trending JavaScript GitHub libraries and shows
how widespread the use of NPM is. In the examined libraries, 14 out of 20
use NPM as their desired package manager.

Repo Name on GitHub Uses NPM

gothinkster / realworld 4

algorithm-visualizer / algorithm-visualizer 4

pixijs / pixi.js 4

jaywcjlove / awesome-mac 4

vuejs / vue 4

bannedbook / fanqiang

strapi / strapi 4

azl397985856 / leetcode

elastic / kibana 4

mui-org / material-ui 4

haotian-wang / google-access-helper

facebook / react-native 4

hasura / graphql-engine

yangshun / tech-interview-handbook

gatsbyjs / gatsby 4

GoogleChrome / puppeteer 4

carbon-design-system / carbon 4

trazyn / ieaseMusic 4

syhyz1990 / baiduyun

axios / axios 4

Table 4.1: The use of NPM in the 20 trending Javascript repos on GitHub.
Stand June 2019 [6]

NPM is a major package manager for JavaScript and as shown in
table 4.1, is widely used in JavaScript development. Projects which use

CHAPTER 4. CONCEPT 17

NPM, include files which identify the dependencies used in the project.
The specified libraries will then be downloaded from the NPM server and
included in the project accordingly. The file containing this information, is
by default ”package.json“ and/or ”package-lock.json” and is written in the
Json file format.

The ”package.json“ and ”package-lock.json“files contain among other
things, the required dependencies for the project with the minimal versions
and the exact versions respectively. Using these files for library identification
has two significant advantages. First and foremost, the libraries which are
used in the project are referenced in full. This means that the library names
do not have to be guessed from the file name etc. On the other hand, the
actual imported version of the libraries is also listed in the json files. Using
precise library names and correct library versions, the process of finding
vulnerabilities using Common Platform Enumeration (CPEs) results in an
accurate list of entries from the National Vulnerability Database (NVD).

4.3.2 Identifying JavaScript Libraries

In the programming language Java, library files are saved as packages with
the extension ”.jar“. A jar file contains a manifest file from which the library’s
name and version, if available, can be obtained. In JavaScript, library
files are pure JavaScript code and have the same ”.js“ extension as other
JavaScript files. This means that in contrast to Java libraries, JavaScript
libraries have to be identified as such. This also means that meta information
is not directly available. Since JavaScript libraries can exist anywhere inside
a project, all ”.js“ files have to be processed individually.

In order to distinguish ”.js“ files from ”.js“ libraries, it is necessary to
find a possible differentiating factor between them. In order to find this
characteristic, the most starred GitHub JavaScript libraries with more than
40000 stars where examined (Stand July 2019). 16 of those repositories
where JavaScript libraries. Table 4.2 lists those libraries and identifies if and
where in the main ”.js“ file, relevant information is noted.

As shown in table 4.2, it is common in JavaScript development to add
the version number to the first block comment of the main ”.js“ file. Hence,
this is a good criteria for JavaScript library detection. Likewise, the library
name is often noted in the file name of JavaScript libraries. The library
name and the version number will then be used to find vulnerabilities using
the Common Platform Enumeration (CPE). ”.js“ files which do not include
a version number in the first block comment will finally be processed as
JavaScript code.

CHAPTER 4. CONCEPT 18

N
am

e
L
ib

N
am

e
in

F
il
e
N
am

e
V
er
si
on

in
F
il
e
N
am

e
V
er
si
on

in
C
om

m
en
ts

F
il
e
N
am

e
V
er
si
on

in
C
om

m
en
t

vu
ej
s/
vu

e
4

4
vu

e.
js

v2
.6
.1
0

tw
bs
/b

oo
ts
tr
ap

4
4

bo
ot
st
ra
p.
m
in
.js

v4
.3
.1

fa
ce
bo

ok
/r
ea
ct

4
4

re
ac
t.
de

ve
lo
pm

en
t.
js

v1
6.
9.
0

d3
/d

3
4

4
4

d3
.v
5.
m
in
.js

v5
.9
.7

fa
ce
bo

ok
/r
ea
ct
-n
at
iv
e

4
4

re
ac
t.
de

ve
lo
pm

en
t.
js

v1
6.
8.
6

ax
io
s/
ax

io
s

4
4

ax
io
s.
m
in
.js

v0
.1
9.
0

Fo
rt
A
w
es
om

e/
Fo

nt
-A
w
es
om

e
4

al
l.j
s

5.
9.
0

an
gu

la
r/
an

gu
la
r.
js

4
4

an
gu

la
r.
m
in
.js

v1
.7
.8

m
rd
oo

b/
th
re
e.
js

4
th
re
e.
m
in
.js

jq
ue
ry
/j
qu

er
y

4
4

4
jq
ue
ry
-3
.4
.1
.m

in
.js

v3
.4
.1

m
ui
-o
rg
/m

at
er
ia
l-u

i
4

4
m
at
er
ia
l-u

i.p
ro
du

ct
io
n.
m
in
.js

v4
.2
.0

ha
ki
m
el
/r
ev
ea
l.j
s

4
re
ve
al
.js

so
ck
et
io
/s
oc
ke
t.
io

4
4

so
ck
et
.io

.js
v2

.2
.0

Se
m
an

ti
c-
O
rg
/S

em
an

ti
c-
U
I

4
4

se
m
an

ti
c.
js

2.
4.
1

ch
ar
tj
s/
C
ha

rt
.js

4
4

C
ha

rt
.m

in
.js

v2
.8
.0

m
om

en
t/
m
om

en
t

4
m
om

en
t.
js

T
ab

le
4.
2:

A
na

ly
si
s
of

th
e
m
ai
n
”.j
s“

fil
e
of

m
os
t
st
ar
re
d
Ja
va
Sc

ri
pt

lib
ra
ri
es

on
G
it
H
ub

.
St
an

d
Ju

ly
20

19
[5
]

Chapter 5

Implementation

In this chapter, the implementation of the JavaScript code clone detector and
the library checker will be explained. Furthermore, general improvements to
the ”Security Checker“ including but not limited to support for the JSON
interface of the NVD API will be discussed.

5.1 Source Code Vulnerability Detector

Finding code clones depends on pre-processing of the ”Security Repo“. In
the process of initializing the code clone detector, the ”Security Repo“ which
includes code snippets with known vulnerabilities is tokenized and the results
are saved to the file storage. When code clone detection is run through the
”Analysis Manager“, ”.js“ source code files which are according to section 5.2
not libraries, are tokenized and compared to the previously tokenized files
inside the ”Security Repo“.

The results are then handed over to the ”AnalysisManager“ and saved to
the JIRA database. JavaScript parsing and tokenizing which is relevant to
both initialization and execution of the code clone detector are explained in
more detail in the following section.

5.1.1 JavaScript Parser and Tokenizer

”SourcererCC“ is equipped with a built-in Java tokenizer which was used
by the original code clone detector of ProDynamics. For JavaScript, a
corresponding tokenizer was implemented. For this purpose, the library
”Closure-Compiler“ by Google was used. This library’s original use is to
improve JavaScript’s execution efficiency by parsing, analyzing, removing
dead code, rewriting and minimizing JavaScript source code [7]. This library
which is also available in the Maven repository, includes a JavaScript parser.
The parser creates a node tree from the source code which can be traversed
and processed according to the developer’s specific need.

19

CHAPTER 5. IMPLEMENTATION 20

As discussed in 4.2.2, defining code blocks for code clone detection using
”SourcererCC“ is a fundamental part of the process. In the above mentioned
section, code block basics for JavaScript have been reviewed comprehensively.
A JavaScript code block is defined in this project as a Java class called
”JsBlock“ which keeps track of the list of tokens, the start and end line
numbers of the code block, the identifying name of the block and a list of
the internally processed nodes.

A major advantage of using ”Closure Compiler“ for JavaScript parsing
is the fact that the created nodes can be traversed independently for sub
nodes. This feature is used to create internally processed, independent
block objects. The process of tokenizing starts from the ”AnalysisManager“
class. A call for the ”CloneDetectorManager“ is created which will in turn
trigger ”TokenizerBase“ to instantiated the corresponding tokenizer for Java
(JavaMethodBasedTokenizer) and JavaScript (JavaScriptMethodBasedTok-
enizer) files respectively. Identified blocks are then processed accordingly
and the corresponding token information is saved to the file storage. The
information about each block is saved as ”Book Keeping Information“ and
the tokens are saved in a separate file. The realization of tokenization as
implemented in W. Brunotte’s masters thesis [2] is as follows.
1 var num1 = 10;
2 var num2 = 20;
3 var sum = num1+num2;
4 var text = "The sum of" + num1 + " and " + num2 + " is " + sum;
5 console.log(text);

Listing 5.1: Sample JavaScript code

Consider listing 5.1. The tokenizer extracts the tokens from the
corresponding block, which in this case is only one, and saves it to the
tokens file. The tokens are saved as shown in listing 5.2. The data can be
divided in two parts by ”@#@“. The second part of the generate tokens data
follows the schema <Token>@@::@@<Quantity>. The first part consists
of a few information about the generated tokens and a few reserved values.
The detailed info about the values is listed in table 5.1
1 54,54,1,14,0,0,0,0,0,13@#@log@@ ::@@1 ,sum@@ ::@@3 ,The@@::@@1 ,

and@@::@@1 ,20.0 @@::@@1 ,of@@::@@1 ,num1@@ ::@@3 ,text@@ ::@@2 ,
num2@@ ::@@3 ,console@@ ::@@1 ,var@@::@@4 ,is@@::@@1 ,10.0@@::@@1

Listing 5.2: Tokens generated from listing 5.1

The generated tokens are extracted from a block inside a source code
file. Additionally, in the initialization process where known vulnerable code
snippets are tokenized, the corresponding CVE Id of the vulnerability also
has to be saved. All the above information is saved to the ”Book Keeping
Information“ file. Listing 5.3 shows the book keeping data generated for
listing 5.1.

CHAPTER 5. IMPLEMENTATION 21

Value Description

1 Block ID Block Identifier

2 Unique Tokenization ID Method Identifier

3 Project ID Project Identifier

4 Unique Resource ID Code Resource Identifier

5 Reserved Reserved for Future Impl.

6 Reserved Reserved for Future Impl.

7 Reserved Reserved for Future Impl.

8 Reserved Reserved for Future Impl.

9 Reserved Reserved for Future Impl.

10 Total Tokens Total Number of Tokens

Table 5.1: Information saved in the first part of a token entry

1 54,14,54,4,8,0,2,0,0,0,0,0,1,CVE -0000 -0000 ,1 ,9.3 ,/
path_to_js_file/filename.js ,Block_0

Listing 5.3: ”Book Keeping Information“ generated from listing 5.1

A ”Book Keeping Information“ entry consists of various information about
a processed code block. This information is listed in table 5.2.

Value Description

1 Block ID Block Identifier

2 Unique Resource ID Code Resource Identifier

3 Unique Tokenization ID Method Identifier

4 Start Start Line Number

5 End End Line Number

6 Granularity Level Granularity Level Setting

7 Language Corresponding Language

8 Resource Type Type of Resource

9 Reserved Reserved for Future Impl.

10 Reserved Reserved for Future Impl.

11 Reserved Reserved for Future Impl.

12 File ID ID of the Vuln. File

CHAPTER 5. IMPLEMENTATION 22

13 Vulnerable ID ID of the Vuln.

14 CVE ID CVE ID of the Vuln.

15 Typ Type of the Vuln.

16 Severity Score Severity Score of the Vuln.

17 Resource Name Name of the Resource

18 Name Name of the Block

Table 5.2: Data saved in ”Book Keeping Information“ entries

5.2 Library Checker

In order to check libraries for vulnerabilities, the ”Security Checker“ plugin
uses the approach explained in section 2.3. This approach makes use of the
Common Platform Enumeration (CPE) to identify vulnerable libraries. The
CPE entries are extracted from the NVD database through their XML or
the newer JSON interfaces. In course of this project, the parser has been
customized to support the JSON interface for data extraction from the NVD
database, as support for the XML interface will end on October 9th, 2019.
The process will be explained in section 5.4.

For library checking to work properly, specific information has to be
extracted and passed to the ”VulnerabilityChecker“ class. For Java, the
included manifest file is used to extract relevant information about the
library of the included ”.jar“ file. In addition to the manifest file, the
file name of a library might also be used for library name and version
number identification. This process is done in the ”JarScanner“ class. For
the programming language JavaScript, the ”VulnerabilityChecker“ receives
data from either the ”NpmScanner“ or the ”JavaScriptScanner“. The
”NpmScanner“ processes library data received through the NPM packages
and the ”JavaScriptScanner“, processes ”.js“ files. The ”NpmScanner“
searches the project for ”package.json“ and ”package-lock.json“ files and
analyzes the files for dependencies. Listing 5.4 is a sample on how
dependencies are stored in the ”package-lock.json“ file.

CHAPTER 5. IMPLEMENTATION 23

1 {
2 "requires": true ,
3 "lockfileVersion": 1,
4 "dependencies": {
5 "minimist": {
6 "version": "0.0.10",
7 "resolved": "https :// registry.npmjs.org/minimist/-/

minimist -0.0.10. tgz",
8 "integrity": "sha1 -3j+YVD2/lggr5IrRoMfNqDYwHc8="
9 },

10 "wordwrap": {
11 "version": "0.0.3",
12 "resolved": "https :// registry.npmjs.org/wordwrap/-/

wordwrap -0.0.3. tgz",
13 "integrity": "sha1 -o9XabNXAvAAI03I0u68b7WMFkQc="
14 }
15 }
16 }

Listing 5.4: A sample package-lock.json file

In the ”package.json“ file, dependencies are listed more briefly in compari-
son to the ”package-lock.json“ file. It includes the name and version numbers
of the used dependencies. Listing 5.5 is a sample ”package.json“ file.
1 {
2 "name": "sample",
3 "version": "6.5.0",
4 "description": "A sample description",
5 "license": "MIT",
6 "dependencies": {
7 "got": "^9.6.0",
8 "registry -auth -token": "^4.0.0",
9 "registry -url": "^5.0.0",

10 "semver": "^6.2.0"
11 }
12 }

Listing 5.5: A sample package.json file

The names and the version numbers are passed to the ”Vulnerability-
Checker“ in order to find matching CPE entries.

The ”JavaScriptScanner“ on the other hand, receives all ”.js“ files included
in the project except those that belong to the libraries downloaded by NPM.
NPM libraries are by default located in the ”node_modules“ folder and its
sub folders. In order to distinguish libraries from normal source code, the
first block comment is processed for a version number. See 4.3.2.The regex
format used for this purpose is ’’v\d+\.\d+\.\d+‘‘.For ”.js“ libraries, the
file name is used as the library name. The library and version number of
”.js“ files is also passed over to the ”VulnerabilityChecker“.

With both NPM and ”.js“ library info available, the process of matching
library information to CPE entries starts. The structure of a CPE entry is

CHAPTER 5. IMPLEMENTATION 24

as follows:

1 cpe :/{ part }:{ vendor }:{ product }:{ version }:{ update }:{ edition }:{
language}

Listing 5.6: The structure of the Common Platform Enumeration (CPE)

The ”part“ entry is set to ”a“ for applications. The options ”h“ and ”o“
are references to hardware and operating system vulnerabilities respectively.
An example for a CPE entry for the ”GNU C Library“, commonly known as
”glibc“ is the following:

1 cpe:/a:gnu:glibc :2.28

Listing 5.7: CPE entry regarding glibc version 2.28

The CPE entries will be matched to the library data and the results are
handed over to the ”AnalysisManager“ and saved to the JIRA database.

5.3 Relevant Database Schema in JIRA

In JIRA plugin development, it is good practice to use the internal JIRA
database instead of an external one. The interface used to access the JIRA
database is called ”Active Objects“. According to the official Atlassian SDK
Development website, ”The goal of the Active Objects plugin is to provide
a plugin data storage component that plugins can and should use to persist
their private data.“ Active objects are used in ProDynamics to store and
retrieve the results of the vulnerability detection.

Figure 5.1 shows the database schema of the JIRA tables which are
used behind the scenes to save the results of vulnerability detection. The
”SECURITY_AO“ table keeps track of projects and their associated sprints.
The table ”SECURITY_FILE_AO“, lists all files belonging to a project.
The table ”SECURITY_VC_AO“ contains the vulnerabilities found in the
libraries of the projects. The CVE id and its corresponding information is
saved in this table. The ”SECURITY_SCCD_AO “ table is used to save the
information regarding vulnerability in source code files. It contains data not
only regarding the CVE Id and its corresponding information but also the
line number and location where the match has been detected in the source
code and the security code repository. All the above data will be available
to the graphical interface which reports back to the user, the vulnerabilities
detected in a project.

5.4 JSON Support for the NVD Database

The national vulnerability database has announced that the XML vulner-
ability feed will retire on October 9th, 2019 and cease to exist on this

CHAPTER 5. IMPLEMENTATION 25

Figure 5.1: Schema of the relevant part of the JIRA database

data. Therefore it was crucial to update the NVD database extraction
of the ProDynamics plugin to support the JSON feed. For this purpose,
the ”CVEParser“ class was rewritten with an object based rather than the
original contextual based parsing of the XML feed. The library ”Gson“ by
Google is used in this project for JSON parsing. The ”CVEJSONReader“
class is called in the initialization phase to download the NVD database. This
class calls the ”CVEJsonParser“ to parse the JSON feed of the NVD database
into corresponding objects. An online tool called ”jsonschema2pojo“ was
used to generate the necessary JSON objects for the parser [18]. The
”NVDUpdater“ class saves the parsed vulnerability data to the corresponding
SQLite database which is later used in the library checking and code clone
detection. Figure 5.2 shows the schema of the local SQLite database. The
schema of the local database is modeled after the structure of the original
XML feed.

5.5 Functional and Graphical Improvements

The original implementation of the ”Security Checker“ plugin is slightly
revised in terms of functionality and graphical user interface. The settings
menu of the ProDynamics plugin contained a text field which was used
to point to the specific sub-folder where the vulnerability code reposi-
tory was located. With the implementation of JavaScript support, the
code repository was divided in Java and JavaScript sub-folders for the
programming languages respectively. Additionally, with unexpected folder
structure changes in the repository, the settings data had to be adjusted
in all instances of ProDynamics used on different machines. Hence,
in order to support multiple programming languages and to tackle the

CHAPTER 5. IMPLEMENTATION 26

Figure 5.2: Schema of the local SQLite NVD database

above mentioned problem with the folder structure, the path to different
programming languages will now be parsed from a file inside the root
of the chosen repository. This file which has to specifically be named
”language_paths.json“, needs to be in the JSON file format. It will include
the paths to the repositories of the supported programming languages.
Listing 5.8 shows the default syntax of the ”language_paths.json“ file.

1 {
2 "path_to_languages":{
3 "Java":"Java/Mixed/results",
4 "JavaScript":"JavaScript/Version1GitHub/results"
5 }
6 }

Listing 5.8: A sample language_paths.json file

In order to report back vulnerability data to the user, the found library and
source code vulnerabilities are listed in separate tables. The table entries
are modified to be arranged by the most severe security risk based on the

CHAPTER 5. IMPLEMENTATION 27

CVE score of the vulnerabilities. For each library and source code file the
most significant security risk is shown and by clicking on the corresponding
link, other vulnerabilities regarding the selected file is presented to the user.
This results in a more compact and comprehensive structure of the GUI and
creates a neater user experience.

In the original version of the ”Security Checker“, the created tables only
included the vulnerabilities which were found in the last sprint. Since an
overview of the vulnerabilities found in the previous sprints might be handy
to some developers, buttons were added to the GUI which generate the
vulnerability tables according to the data committed in the course of that
specific sprint. Figure 5.3 is a sample for the redesigned structure of the
GUI.

CHAPTER 5. IMPLEMENTATION 28

F
ig
ur
e
5.
3:

R
ed

es
ig
ne

d
G
U
I
of

th
e
”S
ec
ur
it
y
C
he
ck
er
“

CHAPTER 5. IMPLEMENTATION 29

5.6 Unexpected Difficulties

The scripting language JavaScript is constantly updated. See 2.4. This
update to the syntax and semantic, created a challenge for the imple-
mentation of the tokenizer. Most of the parsers written in Java for the
programming language JavaScript like the well known ”Rhino“ by Mozilla,
only support JavaScript up to ECMAScript 5 (Version 5) and some features
of ”ECMAScript 2015“ (Version 6) [13]. The library ”Closure-Compiler“ by
Google, has a built in JavaScript parser. Unfortunately, it does not have
a proper documentation for its built in parsing functionality. Therefore it
took some time until I was able to create a working JavaScript parser written
purely in Java.

The other significant hurdle I faced, was the development of the JSON
parser for the NVD feed. The structure of the soon to be deprecated XML
feed, was not identical to that of the JSON feed. Although the underlying
information was for the most part identical, the structure was changed
slightly. This meant that some of the information which was received from
the JSON feed had to be processed before it could be passed on to the
already available architecture of the ProDynamics plugin. As an example,
all possible CPE entries for each application was directly included in the
XML feed. In the JSON feed, the products which had vulnerabilities in
more than one version, used a ”*“ in the corresponding CPE entry and
referenced the version number separately. Therefore, although the JSON
feed is more efficiently structured, the initialization process now processes
the entries and adds the CPE data accordingly. Another hardship in this
regard was the syntax of the CPE entry. The JSON feed uses CPE version
2.3. Since the ”Security Checker“ plugin is based on CPE version 2.2, the
entries had to be reprocessed to version 2.2.

The JIRA plugin development package which is released and maintained
by Atlassian has a few flaws that make the process of development
unnecessary time consuming. The Atlassian SDK which is required for JIRA
plugin development, offers ”QuickReload“ as a tool to assist developers to
modify and run cycles faster. Unfortunately, uncaught exceptions which are
not rare in Java software development sometimes lead to total shut down of
JIRA as a whole. Since the ”Security Checker“ makes use of threads to run
vulnerability checking in parallel to the normal use of the JIRA software,
an uncaught exception often led to a total halt to the development process
before restarting the server anew. It also has to be noted that on each run,
the whole JIRA software has to be initialized completely.

Chapter 6

Evaluation

The ”Security Checker“, as part of the JIRA plugin ”ProDynamics“, aimed at
detecting vulnerabilities in the programming language Java. The main goal
of this thesis is to extend the ”Security Checker“ to also support JavaScript
through a corresponding JavaScript code clone detector and library checker.
In order to evaluate the implemented software, known vulnerabilities are
imported and analyzed by the software and the results together with the
corresponding performance indicators is described in this chapter.

6.1 Performance Indicators

Precision, recall and F1 are some of the standard indicators for the
performance of an information retrieval (IR) system [8]. Table 6.1 can
be used as a basis in order to understand these indicators and their
corresponding equations.

Relevant Nonrelevant
Retrieved True Positives (TP) False Positives (FP)
Not Retrieved False Negatives (FN) True Negatives (TN)

Table 6.1: Contingency table for performance indicators [19]

According to Manning et al. ”Recall (R) is the fraction of relevant doc-
uments that are retrieved“ [19]. The corresponding equation for calculating
recall is:

Recall(R) =
TP

TP + FN

Manning et al. also point out ”Precision (P) is the fraction of retrieved
documents that are relevant“ [19]. The equation for calculating precision in

30

CHAPTER 6. EVALUATION 31

an information retrieval system is:

Precision(P) =
TP

TP + FP

Information retrieval systems may have their focus on different performance
indications. A high recall might be more important while searching for files
on the hard drive of a computer. On the other hand, a high recall might lead
to a huge number of results which might make the search uninterpretable.
A high precision can also cause similar difficulties. Therefore, a combined
performance indicator where recall and precision have a weighted effect on
the calculated value, can be a better indicator for the performance of a
specific information retrieval system. Manning et. al. define the F measure
as such: ”A single measure that trades off precision versus recall is the F
measure, which is the weighted harmonic mean of precision and recall“ [19].
The equation for the F measure is as follows:

F =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR

β2P +R
where β2 =

1− α
α

and α ∈ [0, 1]

The popular F1 measure aka. ”balanced F measure“ weighs recall and
precision equally thus α = 1

2 and β = 1. In course of this chapter, the
evaluation of the code clone detector and library checker is based on the
”balanced F measure“ or F1.

6.2 Evaluating Code Clone Detection

Apart from the effectiveness of the underlying technique used by Sourcer-
erCC, code clone detection for JavaScript depends on token extraction and
the way code blocks are defined. Therefore it is reasonable to evaluate the
implementation of JavaScript code clone detection separately.

To evaluate code clone detection in JavaScript, 20 vulnerable code
snippets, as listed in Table 6.2, are used. These sample code snippets are
added to the security repository. For each sample, the code sample itself, the
appropriate fix, a manually prepared Type 2 and a manually prepared Type
3 code clone is processed with the developed software. The original ”Security
Checker“ plugin offers three different settings for code clone detection:

• High Recall

• Combined Precision & Recall

• High Precision

As part of the evaluation, all three configurations have been examined. The
results of the code clone detection will be presented in course of this chapter.

CHAPTER 6. EVALUATION 32

CVE Score Product

1 CVE-2019-11358 4.3 jQuery

2 CVE-2017-2445 4.3 Apple Safari

3 CVE-2017-1000042 6.1 Mapbox Project

4 CVE-2014-7192 10.0 syntax-error Node.js Module

5 CVE-2014-7192 10.0 syntax-error Node.js Module

6 CVE-2018-3754 6.5 query-mysql Node.js Module

7 CVE-2018-16462 8.4 apex-publish-static-files Node.js Module

8 CVE-2016-3714 8.4 ImageMagick

9 CVE-2018-3750 7.5 deep_extend Node.js Module

10 CVE-2007-3670 4.3 Microsoft Internet Explorer

11 CVE-2017-16088 10.0 safe-eval Node.js Module

12 CVE-2017-11895 7.5 Microsoft Internet Explorer

13 CVE-2014-0046 2.6 Ember.js

14 CVE-2018-3774 10.0 url-parse Node.js Module

15 CVE-2018-11093 6.1 CKEditor 5

16 CVE-2017-7534 5.4 OpenShift Enterprise

17 CVE-2019-7167 7.5 Zcash

18 CVE-2015-1840 5.0 jquery_ujs.js in jquery-rails

19 CVE-2015-7384 7.5 Node.js

20 CVE-2019-10744 7.5 loadash Node.js Module

Table 6.2: 20 Vulnerable Source Code Samples. Multiple code
snippets refer to the same CVE ID

6.2.1 Essential Code Samples

An example for a vulnerable code snippet is listing 6.1. It is the
corresponding code snippet to CVE-2014-7192. It is also a code clone of type-
1 to itself. This vulnerability can lead to the ”eval“ function being misused
by remote attackers to execute arbitrary code on the victims computer. A
vulnerability with a base score of 10.0 creates a high risk for a software
artifact. According to the national vulnerability database, the original
description of this vulnerability is as follow:

CHAPTER 6. EVALUATION 33

”Eval injection vulnerability in index.js in the syntax-error package
before 1.1.1 for Node.js 0.10.x, as used in IBM Rational Application
Developer and other products, allows remote attackers to execute arbitrary
code via a crafted file.“

1 var http = require(’http’);
2 http.createServer(function (request , response) {
3 if (request.method === ’POST’) {
4 var data = ’’;
5 request.addListener(’data’, function(chunk) {
6 data += chunk;
7 });
8 request.addListener(’end’, function () {
9 var bankData = eval("(" + data + ")");

10 bankQuery(bankData.balance);
11 });
12 }
13 });

Listing 6.1: Vulnerable code snippet according to CVE-2014-7192

The ”eval“ function if not handled correctly can be used to define variables in
the scope it is used in. Therefore, it might become a target for exploitation.
In order to fix this vulnerability, the JavaScript function ”eval“ has to be
run in ”strict mode“ (Introduced in ECMAScript 5). In this case, the ”eval“
function can also be replaced by ”JSON.parse“. Listing 6.2 is a fix for the
mentioned vulnerable code snippet.

1 var http = require(’http’);
2 http.createServer(function (request , response) {
3 "use strict"
4 if (request.method === ’POST’) {
5 var data = ’’;
6 request.addListener(’data’, function(chunk) {
7 data += chunk;
8 });
9 request.addListener(’end’, function () {

10 var bankData = JSON.parse(data);
11 bankQuery(bankData.balance);
12 });
13 }
14 });

Listing 6.2: Corresponding fix for listing 6.1

In software development, code with similar output can be written in
variations of Syntaxes. A code clone detector needs to be able to not only
detect exact matches but also similar code snippets. Listing 6.3 is a type-2
code clone of the above vulnerable code snippet. In the type-2 clone for
listing 6.1, variables ”http“ and ”bankData“ have been renamed to ”link“and
”bankD“ respectively. A line comment has also been added to line number

CHAPTER 6. EVALUATION 34

6.

1 var link = require(’http’);
2 link.createServer(function (request , response) {
3 if (request.method === ’POST’) {
4 var data = ’’;
5 request.addListener(’data’, function(chunk) {
6 data += chunk;
7 });
8 //a sample comment
9 request.addListener(’end’, function () {

10 var bankD = eval("(" + data + ")");
11 bankQuery(bankD.balance);
12 });
13 }
14 });

Listing 6.3: Type-2 clone for listing 6.1

Listing 6.4 is a type-3 clone for the above example. Here, the original
variable ”link“ has been omitted and replaced by a direct call to the
require function ”require(’http’)“. Similar to the type-2 clone, the variable
”bankData“ has also been renamed to ”bankD“. A comment on line 4 also
differentiates this code snippet from the original listing 6.1.

1 require(’http’).createServer(function (request , response) {
2 if (request.method === ’POST’) {
3 var data = ’’;
4 //a sample comment
5 request.addListener(’data’, function(chunk) {
6 data += chunk;
7 });
8 request.addListener(’end’, function () {
9 var bankD = eval("(" + data + ")");

10 bankQuery(bankD.balance);
11 });
12 }
13 });

Listing 6.4: Type-3 clone for listing 6.1

6.2.2 Code Clone Detection Analysis

In the conducted evaluation, fixes that are categorized as code clones are
constantly viewed as non relevant but retrieved (false positive) information.
On the other hand, the aim of the code clone detector is to identify code
clones of types 1 2 and 3 and therefore categorizing such detection as relevant
and retrieved (true positive) data. It is also worth mentioning that recall is
calculated based on the known information about the vulnerability of each
code snippet. If it were calculated without any information regarding the

CHAPTER 6. EVALUATION 35

code samples, the calculation of the recall value would be more complex [2].
Table 6.3 is an overview of the code clone detection with regard to each fix
and code clones of different type.

It is worth mentioning that the aim of code clone detection is to find code
that may produce a similar vulnerability. Code snippets that contain the
fixed version of a known vulnerability should not be designated as vulnerable
source code. The found code clones are designated in the following table with
a 4 sign which is a symbol for a true positive (TP) and fixes that are detected
as code clones are identified with 6 as their detection is considered a false
positive (FP). Blank columns indicate code samples which have not been
found. In case of fixes, the blank columns are true negatives (TN) and in
case of the different code types, they refer to false negatives (FN).

CHAPTER 6. EVALUATION 36

H
ig
h

R
ec
al
l

C
om

bi
ne

d
P
re
ci
si
on

&
R
ec
al
l

H
ig
h

P
re
ci
si
on

F
ix

T
yp

e-
1

T
yp

e-
2

T
yp

e-
3

F
ix

T
yp

e-
1

T
yp

e-
2

T
yp

e-
3

F
ix

T
yp

e-
1

T
yp

e-
2

T
yp

e-
3

1
6

4
4

4
6

4
6

4

2
6

4
4

4
6

4
4

4
6

4

3
6

4
4

4
6

4
6

4

4
6

4
4

4
6

4
4

6
4

4

5
6

4
4

4
6

4
4

6
4

6
6

4
4

4
6

4
4

6
4

7
6

4
4

4
6

4
4

4
4

8
6

4
4

4
6

4
4

6
4

9
6

4
4

6
4

4
6

4

10
6

4
4

4
6

4
4

6
4

11
6

4
4

4
6

4
4

6
4

12
6

4
4

4
6

4
4

6
4

13
6

4
4

4
6

4
4

6
4

14
6

4
4

4
6

4
4

15
6

4
4

4
6

4
4

4

16
6

4
4

4
6

4
4

6
4

17
6

4
4

4
6

4
4

6
4

18
6

4
4

6
4

4
6

4

19
6

4
4

6
4

4
6

4

20
6

4
4

4
6

4
4

T
ab

le
6.
3:

C
od

e
cl
on

e
de

te
ct
io
n
re
su
lt
s.

R
ow

nu
m
be

r
co
rr
es
po

nd
to

th
e
vu

ln
er
ab

ili
ti
es

lis
te
d
in

ta
bl
e
6.
2.

CHAPTER 6. EVALUATION 37

In contrast to the evaluation result of code clone detection using
SourcererCC for the programming language Java which was conducted by F.
P. Viertel et al. [28], the different code block structure for JavaScript results
in many fixes being identified as code clones. Table 6.4 lists the values for
recall, precision and a combination of both for all the code clone detection
settings available to the ”Security Checker“. For better comprehension and
in order to be able to compare results, fixes which were identified as code
clones are also designated as true positives. This has to be kept in mind that
with regard to table 6.4, the goal of a clone detector has to be, maximizing
the performance indicators of all code clone types while minimizing the
performance indicators of fixes. For the calculation of the indicators, true

High Recall Combined
Precision & Recall High Precision

Type-1 Clones

TP 20 20 20
R 100 100 100
P 100 100 100
F1 100 100 100

Type-2 Clones

TP 20 16 2
R 100 80 10
P 100 100 100
F1 100 88 18

Type-3 Clones

TP 17 1 0
R 85 5 0
P 100 100 100
F1 91 9 0

Fixes

TP 20 20 16
R 100 100 80
P 100 100 100
F1 100 100 88

Table 6.4: Recall, precision and F1 according to table 6.3

positives are defined as code samples that are identified as code clones.
The reason why precision is calculated as 100% is that for each analysis
iteration, the input code snippets are all part of the expected code clone
result. Therefore it is evident that precision is calculated as 100%.

6.3 Evaluating Library Detection

In the original implementation of the ”Security Checker“ plugin, library
vulnerability detection for the programming language Java, depends on three
different pieces of information which is extracted from the manifest file of
Java libraries identified through their file extension, ”jar“. This information

CHAPTER 6. EVALUATION 38

are library name, vendor and version. The programming language JavaScript
lacks such a manifest file. Thus, information has to be extracted from the
comment blocks or through a package manager like NPM. This process is
discussed with more detail in section 4.2.

In order to evaluate library vulnerability detection using information
gathered through NPM, a mix of known vulnerable libraries mixed with
a list of libraries which have not been identified as vulnerable, are used. The
list of libraries which have been used for the evaluation purpose consists of
35 libraries. The vulnerable libraries consist of 15 outdated NPM packages.
Whilst the updated version of these libraries may have been fixed, older
versions with known vulnerabilities were purposefully chosen. For libraries
with no known vulnerability, the 20 most depended upon NPM packages are
used [23]. Table 6.5 shows an overview of the 15 vulnerable NPM libraries
which were used for the evaluation.

CVE Score Product Version

1 CVE-2018-3724 5.0 general-file-server 1.1.8

2 CVE-2018-16461 9.8 libnmap 0.4.10

3 CVE-2016-10551 9.8 waterline-sequel 0.5.0

4 CVE-2018-1999024 5.4 mathjax 2.7.3

5 CVE-2018-3713 6.5 angular-http-server 1.9.0

6 CVE-2016-10548 6.1 reduce-css-calc 1.2.4

7 CVE-2015-1164 4.3 serve-static 0.1.2

8 CVE-2015-8862 6.1 mustache 2.2.0

9 CVE-2016-10539 7.5 negotiator 0.6.0

10 CVE-2017-10910 6.5 mqtt 0.3.13

11 CVE-2018-0114 7.5 node-jose 0.9.2

12 CVE-2017-1000220 9.8 pidusage 1.1.4

13 CVE-2017-16023 7.5 decamelize 1.1.0

14 CVE-2017-5858 5.9 converse.js 2.0.4

15 CVE-2017-16021 6.5 uri-js 2.1.1

Table 6.5: 15 vulnerable NPM libraries

The above vulnerable libraries are mixed with the latest version of the 20
most depended upon NPM packages. None of these libraries have, as of this
writing, been identified as vulnerable by the NVD database. Table 6.6 is the

CHAPTER 6. EVALUATION 39

list of the 20 most depended upon NPM libraries with stand August 2019
which have been mixed with the above table for the evaluation purpose.

Product Version Product Version

1 lodash 4.17.15 11 async 3.1.0

2 chalk 2.4.2 12 fs-extra 8.1.0

3 request 2.88.0 13 bluebird 3.5.5

4 react 16.9.0 14 tslib 1.10.0

5 express 4.17.1 15 axios 0.19.0

6 commander 2.8.1 16 uuid 3.3.3

7 moment 2.24.0 17 underscore 1.9.1

8 debug 4.1.1 18 vue 2.6.10

9 prop-types 15.7.2 19 classnames 2.2.6

10 react-dom 16.9.0 20 mkdirp 0.5.1

Table 6.6: 20 most depended upon NPM libraries

For the evaluation, if at least one CVE Id is identified by the library
checker for a given library, it is considered as vulnerable. The corresponding
recall, precision and F1 values of the conducted searches for all three
configuration is listed in table 6.7.

High Recall Combined
Precision & Recall High Precision

TP 15 15 12
FP 4 4 0
FN 0 0 3
R 100 100 80
P 79 79 100
F1 88 88 89

Table 6.7: Recall, precision and F1 for library detection

The package manager NPM has set a few constraints for developers
who wish to upload their libraries to the package manager. One of these
constraints is the name of the package. NPM does not allow duplicate
package names. Therefore each developer has to come up with a unique
name for his/her library [24]. This has led to the library checker to score a
high precision and F1 value for settings event set to ”High Recall“.

Chapter 7

Summary and Outlook

Throughout this chapter, the basic idea of this thesis and the results
developed based on it are presented. It will also contain an outlook and
some relevant ideas for the further development of the "Security Checker"
plugin.

7.1 Summary

In course of this work, the ”Security Checker“ of the ProDynamics plugin,
which was developed to detect vulnerabilities in Java projects, was extended
to also support JavaScript. A purely Java based, JavaScript tokenizer was
developed to enhance code clone detection for JavaScript. In order to detect
source code vulnerabilities in JavaScript, the method-based clone recognition
was revised based on the specific requirements of JavaScript. This includes
analyzing source code not only based on functions but also classes and code
blocks outside of functions. Furthermore, library vulnerability checking was
implemented for JavaScript with regard to the popular package manager
NPM. Since JavaScript source code and libraries both use the ”.js“ extension,
JavaScript files are examined for a corresponding version number in the
comment blocks and processed as libraries accordingly.

With code blocks defined a bit differently in JavaScript in comparison
to Java, ”SourcererCC“ is still able to detect code clones of up to type-
3 when the emphasize in code clone detection is on high recall values.
While moving towards a higher precision, type-3 code clones start to become
unrecognizable. This shows that because of the different code block definition
in JavaScript in comparison to Java, source code is more sensitive to
variations.

Duplicated naming is not allowed in the package manager NPM.
Therefore library names are added to the library checker as whole. This
has led to high precision and F1 values for all possible configurations of the
”Security Checker“.

40

CHAPTER 7. SUMMARY AND OUTLOOK 41

The GUI of the ”Library Checker“ was also improved to enhance the
user experience and to offer the user a more comprehensive picture of
possible vulnerabilities. Since the XML interface of the NVD vulnerability
database will soon be suspended, the JSON feed was adapted to ensure future
compatibility with the fundamental requirements of the ”Security Checker“.

7.2 Outlook

Although ”SourcererCC“ offers a solid basis for code clone detection, lexical
analysis does still have the downside of generating a high number of false
positives. In order to tackle this problem, condition based vulnerability
detection as explained in the paper by W. Jimenez et al. might be a
proper extension to the current approach [11]. Since static techniques for
vulnerability detection in source code is principally based on a databases
of known vulnerable code, an open and free to use database similar or
in extension to the NVD database can be of help to many developers.
With a community of experts accessing and updating this database, it can
play a significant role in future projects including the ”Security Checker“ of
ProDynamics.

Bibliography

[1] Atlassian. The world’s best teams work better together with atlassian.
https://www.atlassian.com/customers.

[2] W. Brunotte. Security Code Clone Detection entwickelt als Eclipse
Plugin. Masterarbeit, Leibniz Universität Hannover, Fachgebiet
Software Engineering, 2018.

[3] N. C. Corporation. Netscape and sun announce javascript, the open,
cross-platform object scripting language for enterprise networks and
the internet. https://web.archive.org/web/20070916144913/http:
//wp.netscape.com/newsref/pr/newsrelease67.html. 28 industry-
leading companies to endorse JavaScript as a complement to Java for
easy online application development.

[4] R. Data. Javascript versions. https://www.w3schools.com/js/js_
versions.asp. W3Schools.

[5] GitHub. Most starred javascript repositories. https://github.com/
search?l=JavaScript&q=stars%3A%3E40000&type=Repositories.

[6] GitHub. Trending. https://github.com/trending.

[7] Google. What is the closure compiler? https://developers.google.
com/closure/compiler/.

[8] C. Goutte and E. Gaussier. A probabilistic interpretation of precision,
recall and f-score, with implication for evaluation. In D. E. Losada
and J. M. Fernández-Luna, editors, Advances in Information Retrieval,
pages 345–359, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[9] S. G. Hubert Garavel and A.-M. Leventi-Peetz. Formal methods for
safe and secure computers systems. Technical Report BSI Study 875,
Federal Office for Information Security, 2013.

[10] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture,
Process and Organization for Business Success. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1997.

42

https://www.atlassian.com/customers
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://www.w3schools.com/js/js_versions.asp
https://www.w3schools.com/js/js_versions.asp
https://github.com/search?l=JavaScript&q=stars%3A%3E40000&type=Repositories
https://github.com/search?l=JavaScript&q=stars%3A%3E40000&type=Repositories
https://github.com/trending
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/

BIBLIOGRAPHY 43

[11] W. Jimenez, A. Mammar, and A. Cavalli. Software vulnerabilities,
prevention and detection methods: A review 1. 07 2010.

[12] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: A
web vulnerability scanner. In Proceedings of the 15th International
Conference on World Wide Web, WWW ’06, pages 247–256, New York,
NY, USA, 2006. ACM.

[13] W. Kapke. Rhino es2015 support. http://mozilla.github.io/rhino/
compat/engines.html.

[14] F. Kortum, J. Klünder, and K. Schneider. Behavior-driven dynamics in
agile development: The effect of fast feedback on teams. 05 2019.

[15] I. V. Krsul. Software Vulnerability Analysis. PhD thesis, Purdue
University West Lafayette, IN, USA, West Lafayette, IN, USA, 1998.
AAI9900214.

[16] D. Lee. Whatsapp discovers ’targeted’ surveillance attack. https://
www.bbc.com/news/technology-48262681. CVE ID: CVE-2019-3568.

[17] W. C. Lim. Effects of reuse on quality, productivity, and economics.
IEEE Softw., 11(5):23–30, Sept. 1994.

[18] J. Littlejohn. Generate plain old java objects from json or json-schema.
http://www.jsonschema2pojo.org.

[19] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[20] M. Matthaei. Integration und test von sicherheitsüberprüfungen in
java. Master’s thesis, Leibniz Universität Hannover, Fachgebiet Software
Engineering, 2019.

[21] MITRE. Terminology. https://cve.mitre.org/about/terminology.
html.

[22] Mozilla. Functions. https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Guide/Functions.

[23] npm. most depended upon packages. https://www.npmjs.com/browse/
depended.

[24] npm. solving npm’s hard problem: naming
packages. https://blog.npmjs.org/post/116936804365/
solving-npms-hard-problem-naming-packages.

http://mozilla.github.io/rhino/compat/engines.html
http://mozilla.github.io/rhino/compat/engines.html
https://www.bbc.com/news/technology-48262681
https://www.bbc.com/news/technology-48262681
http://www.jsonschema2pojo.org
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://www.npmjs.com/browse/depended
https://www.npmjs.com/browse/depended
https://blog.npmjs.org/post/116936804365/solving-npms-hard-problem-naming-packages
https://blog.npmjs.org/post/116936804365/solving-npms-hard-problem-naming-packages

BIBLIOGRAPHY 44

[25] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes.
Sourcerercc: Scaling code clone detection to big-code. 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), pages
1157–1168, 2016.

[26] K. Schwaber and J. Sutherland. The scrum guide. https://www.
scrumguides.org/scrum-guide.html.

[27] M. Selakovic and M. Pradel. Performance issues and optimizations in
javascript: An empirical study. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 61–72, May 2016.

[28] F. P. Viertel, W. Brunotte, D. Strüber, and K. Schneider. Detecting
security vulnerabilities using clone detection and community knowledge.
In Proceedings of the Thirty-First International Conference on Software
Engineering and Knowledge Engineering (SEKE’19). KSI Research Inc.,
2019.

[29] F. P. Viertel, F. Kortum, L. Wagner, and K. Schneider. Are third-party
libraries secure? a software library checker for java. In A. Zemmari,
M. Mosbah, N. Cuppens-Boulahia, and F. Cuppens, editors, Risks and
Security of Internet and Systems, pages 18–34, Cham, 2019. Springer
International Publishing.

[30] T. Watanabe, M. Akiyama, F. Kanei, E. Shioji, Y. Takata, B. Sun,
Y. Ishi, T. Shibahara, T. Yagi, and T. Mori. Understanding the origins
of mobile app vulnerabilities: A large-scale measurement study of free
and paid apps. In Proceedings of the 14th International Conference on
Mining Software Repositories, MSR ’17, pages 14–24, Piscataway, NJ,
USA, 2017. IEEE Press.

[31] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel. Small world
with high risks: A study of security threats in the npm ecosystem. In
28th USENIX Security Symposium (USENIX Security 19), pages 995–
1010, Santa Clara, CA, Aug. 2019. USENIX Association.

https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html

Listings

4.1 Defining and using a class in Java 14
4.2 Defining and using a class in JavaScript 14
4.3 Objects in JavaScript prior to ECMAScript 6 (ES6) 14
4.4 Nested functions in JavaScript with a function as return value 15
5.1 Sample JavaScript code . 20
5.2 Tokens generated from listing 5.1 20
5.3 ”Book Keeping Information“ generated from listing 5.1 21
5.4 A sample package-lock.json file 23
5.5 A sample package.json file . 23
5.6 The structure of the Common Platform Enumeration (CPE) . 24
5.7 CPE entry regarding glibc version 2.28 24
5.8 A sample language_paths.json file 26
6.1 Vulnerable code snippet according to CVE-2014-7192 33
6.2 Corresponding fix for listing 6.1 33
6.3 Type-2 clone for listing 6.1 . 34
6.4 Type-3 clone for listing 6.1 . 34

45

List of Tables

2.1 ECMAScript changes over time [4] 6

4.1 The use of NPM in the 20 trending Javascript repos on
GitHub. Stand June 2019 [6] 16

4.2 Analysis of the main ”.js“ file of most starred JavaScript
libraries on GitHub. Stand July 2019 [5] 18

5.1 Information saved in the first part of a token entry 21
5.2 Data saved in ”Book Keeping Information“ entries 22

6.1 Contingency table for performance indicators [19] 30
6.2 20 Vulnerable Source Code Samples. Multiple code snippets

refer to the same CVE ID . 32
6.3 Code clone detection results. Row number correspond to the

vulnerabilities listed in table 6.2. 36
6.4 Recall, precision and F1 according to table 6.3 37
6.5 15 vulnerable NPM libraries 38
6.6 20 most depended upon NPM libraries 39
6.7 Recall, precision and F1 for library detection 39

46

List of Figures

2.1 Code clone detection as implemented in [28] 4
2.2 Library detection as implemented in [29] 5

4.1 Overview of the ProDynamics JIRA plugin [14] 11
4.2 Architecture Diagram of the ”Security Checker“ 12

5.1 Schema of the relevant part of the JIRA database 25
5.2 Schema of the local SQLite NVD database 26
5.3 Redesigned GUI of the ”Security Checker“ 28

47

	Introduction
	Problem
	Proposed Solution
	Structure of the Thesis

	Basics
	Software Vulnerability
	Code Clone Detection
	Detecting Vulnerable Libraries
	JavaScript
	Node Package Manager (NPM)
	JIRA

	Related Works
	Concept
	ProDynamics Plugin for JIRA
	Detecting Source Code Vulnerabilities
	The Evolution of JavaScript
	Defining Blocks

	Detecting Library Vulnerabilities
	Identifying NPM Libraries
	Identifying JavaScript Libraries

	Implementation
	Source Code Vulnerability Detector
	JavaScript Parser and Tokenizer

	Library Checker
	Relevant Database Schema in JIRA
	JSON Support for the NVD Database
	Functional and Graphical Improvements
	Unexpected Difficulties

	Evaluation
	Performance Indicators
	Evaluating Code Clone Detection
	Essential Code Samples
	Code Clone Detection Analysis

	Evaluating Library Detection

	Summary and Outlook
	Summary
	Outlook

